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1 Introduction

Increasingly, retailers have access to better pricing technology, especially in online markets. In

particular, pricing algorithms are becoming more prevalent. Algorithms can change pricing

behavior by enabling firms to update prices more frequently and automate pricing decisions.

Thus, firms can commit to pricing strategies that react to price changes by competitors. This

may have important implications for price competition relative to standard oligopoly models in

which firms set prices simultaneously. Do pricing algorithms lead to higher prices?

In this paper, we present new facts about pricing behavior that highlight the above features

of pricing algorithms. Using a novel dataset of high-frequency prices from large online retailers,

we document pricing patterns that are (i) consistent with the use of automated software and

(ii) inconsistent with the standard empirical model of simultaneous price-setting behavior. Re-

tailers update prices at regular intervals, but these intervals differ across firms, allowing some

retailers to adjust prices at higher frequencies than their rivals. Firms with faster pricing tech-

nology quickly respond to price changes by slower rivals, indicating commitment to automated

strategies that depend on rivals’ prices. Finally, we examine price dispersion, and we show that

price differences across retailers are related to asymmetries in pricing technology.

Motivated by these facts, we introduce a model of price competition that incorporates in-

creased pricing frequency and short-run commitment through the use of algorithms. Our model

allows for asymmetric technology among firms. We show that asymmetry in pricing technol-

ogy can fundamentally shift equilibrium behavior: if one firm adopts superior technology, all

firms can obtain higher prices. If all firms adopt automated high-frequency algorithms, col-

lusive prices can be supported without the use of traditional collusive strategies. Thus, we

illustrate how pricing algorithms can generate supracompetitive prices through novel, non-

collusive mechanisms.1 Frequency, commitment, and asymmetry in pricing technology allow

firms to support higher prices in competitive (Markov perfect) equilibrium.

We use our model to analyze the impacts of pricing technology in oligopoly settings. We

show that asymmetric pricing technology can increase price levels, exacerbate the price effects

of mergers, and generate price dispersion. In particular, the model can rationalize why firms

that have higher-frequency pricing have lower prices than their competitors, even when the

firms are otherwise identical. Thus, our model provides a supply-side explanation for price

dispersion, complementing the demand-side explanations that are emphasized in the literature,

such as the presence of search frictions. We use a counterfactual simulation to quantify the

impacts of asymmetric pricing technology in our empirical setting. Overall, our results show

that the competitive impacts of algorithms can be quite broad.

We begin by highlighting the key features of pricing algorithms used by online retailers
1The existing literature has focused on whether algorithms can facilitate collusion, almost exclusively assuming

that firms have symmetric, price-setting technology (e.g., Calvano et al., 2020; Miklós-Thal and Tucker, 2019;
Salcedo, 2015).
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(Section 2). We present three stylized facts using high-frequency price data for over-the-counter

allergy medications for the five largest online retailers in the category. First, we document

heterogeneity in pricing technology. Two firms have high-frequency algorithms that change

prices within an hour, one firm updates prices once per day, and the remaining two have weekly

pricing technology, updating their prices early every Sunday morning. Second, we show that the

fastest firms quickly react to price changes by slower rivals, consistent with the use of automated

pricing algorithms that monitor rivals’ prices and follow a pre-specified strategy. Third, we

show that asymmetric pricing technology is associated with asymmetric prices. Relative to

the firm with the fastest pricing technology, the firm with daily pricing technology sells the

same products at prices that are 10 percent higher, whereas the firms with weekly pricing

technology sell those products at prices that are approximately 30 percent higher. These facts

are inconsistent with the widespread assumption that firms have essentially symmetric price-

setting technology in online markets.

We introduce an economic framework to capture these features of online price competition

in Section 3. We study competitive equilibria when firms may have high-frequency algorithms

that condition on rivals’ prices. Specifically, we introduce a model that allows firms to have dif-

ferent pricing frequencies and to commit to a pricing strategy that depends on rivals’ prices. We

show that asymmetry in pricing technology—either in frequency or commitment—yields prices

that lie between the simultaneous (Bertrand) and sequential (Stackelberg) equilibria and nests

both as special cases. When prices are strategic complements, as is typical in empirical models

of demand, the faster firm has lower prices and higher profits than the slower firm. Thus, our

model provides a supply-side explanation for the price dispersion observed in the data. We

also show that, when firms can choose their pricing frequency, each firm has a unilateral profit

incentive to choose more frequent or less frequent pricing than their rivals. Due to these in-

centives, asymmetric pricing frequency (and not simultaneous price-setting) is the equilibrium

outcome when pricing frequency is endogenous.

In Section 4, we analyze the case where all firms can condition on rivals’ prices. We derive a

one-shot competitive game in which firms submit pricing algorithms, rather than prices. We use

the one-shot game to show that symmetric short-run commitments, in the form of automated

pricing, can also generate higher prices. To demonstrate the significant implications of this

dimension of algorithmic competition, we focus on equilibrium pricing strategies that, in some

sense, “look competitive.” That is, we eliminate collusive strategies that rely on cooperate-or-

punish schemes. Even with these restrictions, pricing algorithms can increase prices relative

to the Bertrand-Nash equilibrium. Supracompetitive prices, including the fully collusive prices,

can be supported with algorithms that are simple linear functions of rivals’ prices.2 In this
2In practice, it is typical for algorithms to have a linear adjustment based on the average price of a set of

competitors. In one interesting example, a retailer on Amazon.com set its price for a book to be 0.9983 times its
rival’s price, and the rival set its price to be 1.270589 times the retailers’ price. The price of the book rose to nearly
$24 million. This, we note, was not an equilibrium. See “How A Book About Flies Came To Be Priced $24 Million
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way, algorithms fundamentally change the pricing game, providing a means to increase prices

without resorting to collusive behavior.

We also address the question of whether pricing algorithms can arrive at competitive

(Bertrand) prices. Our model provides a stark negative result: all firms will not choose price-

setting best-response (Bertrand reaction) functions in equilibrium. Further, if any firm uses an

algorithm that depends on a rival’s price, Bertrand prices do not arise in equilibrium. Intuitively,

our results are supported by the following logic: A superior-technology firm commits to best re-

spond to whatever price is offered by its rivals, and its investments in frequency or automation

makes this commitment credible. The rivals take this into account, softening price competition.

Our model nests several different theoretical approaches that were developed prior to the ad-

vent of pricing algorithms and have largely been dismissed in the modern literature, including

conjectural variations. We highlight these connections below.

In Section 5, we consider the the impact of algorithms in oligopoly settings, focusing on the

case of asymmetric technology. As in the duopoly case, firms with superior pricing technology

have relatively lower prices, and all prices may be elevated relative to the Bertrand-Nash equi-

librium. We then explore the implications for the price effects of mergers. In our model, asym-

metries in pricing technology generate higher post-merger prices relative to the post-merger

Bertrand-Nash equilibrium. With asymmetric technology, mergers can increase or reduce price

dispersion across firms, depending on the relative technology of the merging firms.

To understand potential impacts in our empirical setting, we simulate counterfactual prices

using an oligopoly model that is calibrated to aggregate prices and shares in our data. We use

a model of demand that allows for flexible substitution patterns among retailers and provides

a tractable empirical approach to modeling supply-side competition with algorithms. With

the obtained demand parameters, we simulate a counterfactual Bertrand-Nash equilibrium in

which firms have simultaneous price-setting technology. Relative to the Bertrand equilibrium,

the calibrated model predicts that algorithmic competition increases average prices by 5 percent

across the five firms. This corresponds to a 10 percent increase in profits and a 4 percent

decrease in consumer surplus. The effect on markups and profits is especially large for firms

with superior pricing technology, i.e., those with the ability to quickly adjust prices. In the

calibrated model, mergers generate larger price increases with algorithmic technology. These

exercises provide a first step toward quantifying the effects of heterogeneous pricing technology.

Online markets have allowed retailers to gather high-frequency data on rivals’ prices and

react quickly through the use of automated software. Indeed, these are key features advertised

by third-party providers of pricing algorithms.3 Evidence suggests that algorithms are becom-

ing more widespread as online retailing continues to grow (Cavallo, 2018). The increased

On Amazon,” Wired, April 27, 2011. https://www.wired.com/2011/04/amazon-flies-24-million/
3For instance, ChannelAdvisor advertises its automated pricing product as “constantly monitoring top competitors

on the market.” Repricer.com “reacts to changes your competitors make in 90 seconds.” Intelligence Node allows
retailers to “have eyes on competitor movements at all times and...automatically update their prices.”
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prevalence of pricing algorithms has drawn significant attention from competition authorities.4

Overall, our results imply that pricing algorithms can support higher-price equilibria, even

when firms act competitively. Our empirical analysis shows price patterns consistent with the

model and suggests that pricing algorithms can have an economically meaningful effect on

markups. Thus, if policymakers are concerned that algorithms will raise prices, then the con-

cern is more broad than that of collusion. Of course, algorithms may also have several benefits,

such as the ability to more efficiently respond to time-varying demand. In light of these issues,

we briefly discuss implications for policymakers in Section 6. Though we focus on competitive

equilibria, our study also has implications for collusion. By increasing competitive prices and

profits, algorithms may make punishment less severe in a collusive scheme, reducing the likeli-

hood of collusion. Additionally, our model explicitly features a new dimension in the strategy

space, allowing firms to change pricing technology as an either a substitute or a complement to

the pursuit of collusion.

Related Literature

We contribute to the nascent literature studying the impacts of algorithms on prices. We

present a new model of price competition to capture features of algorithms—frequency and

commitment—that have not been studied previously. The existing literature has focused on

the price effects of learning algorithms (Salcedo, 2015; Calvano et al., 2020; Johnson et al.,

2021; Asker et al., 2021) or prediction algorithms (Miklós-Thal and Tucker, 2019; O’Connor

and Wilson, 2019) in the context of a standard simultaneous price (or quantity) game. This

literature focuses on how learning or prediction algorithms affect the sophistication of players

and their ability to collude.5 By contrast, we examine how pricing algorithms change the nature

of pricing game, focusing on Markov perfect equilibria as in Maskin and Tirole (1988b).6 Our

model generates a new set of equilibrium strategies and outcomes that can be supported by

algorithms.

There has been little empirical evidence on the pricing strategies used by major online

retailers. Using surveys and case studies, competition authorities have noted that online firms

may collect information about the prices of competitors and use the information to adjust their

own prices.7 Studies in the computer science literature have examined pricing rules employed

by third-party sellers that use rivals’ prices as an input (e.g. Chen et al., 2016). Our novel high-
4See, for instance, the U.K. Competition and Markets Authority’s 2018 report, “Pricing Algorithms” and Ger-

many’s “Twenty-second Biennial Report by the Monopolies Commission.” Thus far, government authorities have
focused on the potential for algorithms to facilitate collusion.

5Klein (2019) considers the same question but in the alternating-move setting of Maskin and Tirole (1988b).
6Maskin and Tirole (1988b) show that higher prices can result in a duopoly game where firms set prices in

alternate periods using strategies that rely exclusively on payoff-relevant variables. Our analysis complements
their work by showing how higher prices may be obtained in Markov perfect equilibrium in a different economic
environment—one in which algorithms provide variation in pricing frequency and enable short-run commitment.

7See, for instance, the European Commission’s 2017 report, “E-commerce Sector Inquiry.”
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frequency dataset allows us to document, systematically, new empirical facts about the pricing

behavior of online competitors. In an offline context, a recent paper by Assad et al. (2020)

examines whether algorithms change pricing strategies and increase prices in retail gasoline

markets.8

The evidence that firms adjust prices at differing frequencies complements the literature

in macroeconomics on menu costs and sticky prices. In offline markets, the literature has

shown heterogeneity in the frequency of price changes across sectors (e.g., Klenow and Malin,

2010; Nakamura and Steinsson, 2008), and has examined the implications for monetary policy

(Nakamura and Steinsson, 2010; Gorodnichenko and Weber, 2016). A more recent literature

has shown that online firms update prices at higher frequency than offline markets, with im-

plications for pass-through (e.g., Gorodnichenko and Talavera, 2017; Cavallo, 2018). Relative

to these papers, our data is at a higher frequency (hourly), allowing us to study differences in

underlying technology across competing firms.

Our findings also contribute to the broader literature on price dispersion in online markets

by providing an explanation for differences in prices for identical products across firms. De-

spite the fact that online competition is thought to reduce search costs and expand geographic

markets, substantial price dispersion has been documented (e.g., Baye et al., 2004; Ellison and

Ellison, 2005). An empirical literature has focused on demand-side features such as search fric-

tions, but little attention has been paid to firm conduct.9 One exception is Ellison et al. (2018),

who examine managerial inattention and price dispersion in an online marketplace in 2000 and

2001, prior to the widespread use of pricing algorithms. Our results suggest that differences in

pricing technology across firms leads to persistent differences in prices for identical products.

We provide a new framework to examine the effects of pricing technology on prices, con-

tributing to the empirical literature that studies supracompetitive prices (e.g., Porter, 1983;

Nevo, 2001; Miller and Weinberg, 2017; Byrne and de Roos, 2019). Our results suggest that

the mode of competition can lead to meaningful price increases without the need for collusion.

Previous empirical studies of supracompetitive prices have exclusively considered stage games

with symmetric technology where firms choose actions (price or quantity) simultaneously; this

framework has been the basis for antitrust analysis as well.10 Our analysis takes a first step

toward incorporating heterogeneous pricing technology and quantifying its implications.

We argue that a key feature of pricing algorithms is the ability to condition on the prices

of rivals. This mechanism relates to a large class of models where firms internalize the reac-

tions of their rivals, including conjectural variations (Bowley, 1924) and the classic Stackelberg

model. The real-world applicability of these models has been subject to a long debate (e.g.,
8Assad et al. (2020) find evidence for price effects only when both firms in duopoly markets adopt superior

pricing technology, which suggests that the mechanism in their setting may be collusion or symmetric commitment.
9Work examining online search frictions includes Hong and Shum (2006), Brynjolfsson et al. (2010), and De los

Santos et al. (2012).
10See, for instance, “Commentary On The Horizontal Merger Guidelines” by the U.S. Department of Justice.
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Fellner, 1949). The conjectural variations model has fallen out of favor, likely because consis-

tent conjectures other than Cournot are difficult to rationalize (Daughety, 1985; Lindh, 1992).

Models with sequential behavior have been dismissed as unrealistic for empirical settings be-

cause it requires the assumption that one firm can honor a (sub-optimal) commitment while

the other reacts. For this reason, applied researchers and antitrust authorities have almost uni-

versally assumed that firms play a simultaneous Bertrand or Cournot game. We argue that such

commitments are credible, made possible by investments in differential pricing technology. Al-

gorithms provide a natural mechanism for the type of technological commitment discussed in

Maskin and Tirole (1988a). Thus, one interpretation of our model is that it provides a new

foundation for theoretical results arising in this older literature. By nesting these models under

a common structure, we also provide a framework for firms to choose among different models

of competition by changing their pricing technology.

The logic of how pricing algorithms leads to higher prices is related to how commitment can

lead to higher prices in other models, including the use of price-matching guarantees (Salop,

1986; Hay, 1981; Moorthy and Winter, 2006).11 Lazarev (2019) shows that higher prices can

result when firms first commit to a restricted set of prices, then choose from among those prices

in a second stage. Conlon and Rao (2019) find that wholesalers selling a homogeneous product

can set the collusive price in a competitive equilibrium when they are required to commit to

a pricing schedule. Also related are models of supply function competition (Grossman, 1981;

Klemperer and Meyer, 1989), in which firms with homogeneous products commit to quan-

tity schedules as a function of the (endogenously-determined) market price. By contrast, our

model features differentiated products, and the algorithms respond to rivals’ (varying) prices,

allowing for different equilibria in oligopoly. The game-theoretic notion of commitment ties

into a broader literature on strategic delegation that has been applied in diverse settings.12

We consider algorithms to be an economic mechanism to make such commitments credible.13

Moreover, we are the first to link pricing algorithms to models with these features.
11Hal Varian discussed the appeal of price matching in online markets in the August 24, 2000 New York Times

article “When commerce moves online, competition can work in strange ways.” In a set of lab experiments, Deck
and Wilson (2000, 2003) find that subjects that use automated price-matching strategies obtain higher profits than
those that manually set prices.

12Fershtman and Judd (1987) and Sklivas (1987) show that, by giving managers a mixture of revenue-based and
profit-based incentives, owners can commit to behavior that is not profit maximizing, leading to higher prices. Bo-
nanno and Vickers (1988) show that manufacturers can soften price competition by selling through an independent
retailer, rather than one that is vertically integrated.

13A related strand of literature deals with one-shot games where players choose contracts (or commitment de-
vices) that condition their actions on the strategies of the other players (Tennenholtz, 2004; Kalai et al., 2010;
Peters and Szentes, 2012). In this literature, (equilibrium) contracts are functions of the other players’ contracts.
Tennenholtz (2004) gives the example of submitting a computer program that reads the rivals’ computer program
and chooses an action accordingly. Another related concept is the cartel punishment device of Osborne (1976).

6



2 Algorithms and Pricing Behavior: Evidence

2.1 What is an Algorithm?

Broadly speaking, an algorithm is a set of instructions that maps inputs to a desired set of

outputs. Pricing algorithms used by online retailers can each be characterized as a formula to

determine prices that is pre-specified by a computer program. Many online retailers consider

rivals prices’ to be a key input in these calculations. In general, an algorithm may depend on

variables related to past, present, and future supply and demand conditions, including the past

play of rivals or the outcomes of experiments. By using automated programs to collect this

information and compute prices, firms can update prices at a higher frequency and place rules

on pricing behavior. We investigate two key features of pricing algorithms that may change the

nature of the pricing game relative to a human agent.

First, an algorithm lowers the cost of updating prices and facilitates a regular pricing fre-

quency. Typically, firms use software to schedule pricing updates at regular intervals, e.g., once

per day or every 15 minutes. The frequency with which a firm can update prices depends on

investments in pricing technology, which may differ across firms. Algorithms facilitate both

regular and more frequent updates, as software can better monitor rivals’ prices and can find

the solution to a difficult pricing problem more efficiently than a human agent. For numerical

calculations, human agents can be slow and error-prone, and they cannot be expected to main-

tain a regular pricing frequency.14 Large online retailers sell several thousand products; relying

on humans to update all prices at regular intervals would be extremely costly.

Second, an algorithm provides a short-run commitment device to a pricing strategy. When

an algorithm depends on rivals’ prices, it can autonomously react to price changes by rivals

according to the formula encoded by the computer program. The program itself is typically

updated at a lower frequency than it is used to set prices. Thus, in between updates to its

algorithm, the firm changes prices based on a fixed set of rules. It is widely thought that

humans lack this sort of commitment power (e.g., Maskin and Tirole, 1988a). In other words,

we typically expect human agents to be bound by an incentive compatibility constraint at every

opportunity to set prices.

Below, we present new empirical facts about pricing technology that demonstrate the impor-

tance of these two features of algorithms. We show that firms differ in the frequency with which

they change prices and that faster firms react to rivals’ price changes. We also find that faster

firms have lower prices than slower firms. In Section 3, we introduce an economic framework

to capture these features and examine the effects on equilibrium prices.
14The study by Ellison et al. (2018) provides empirical evidence of human inefficiency along these dimensions.
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Table 1: Daily Statistics for Hourly Price Data

Retailer Retailer Retailer Retailer Retailer All
Statistic A B C D E Retailers

Count of Products 124.9 41.3 49.9 42.5 35.1 58.7
Observations per Product 20.9 20.4 19.0 21.1 19.1 20.1
Price: Mean 27.18 16.88 17.63 20.93 21.74 20.86
Price: 10th Percentile of Products 9.75 6.93 5.53 6.88 7.50 7.32
Price: 90th Percentile of Products 51.11 28.95 33.30 38.21 39.65 38.21
Mean Absolute Price Change 1.35 2.31 1.12 3.28 3.06 1.91
Price Changes per Product 1.89 0.28 0.01 0.02 0.03 0.45
Share of Products with a Price Change 0.373 0.089 0.008 0.020 0.024 0.103

Notes: Table displays the daily mean for each statistic across five major online retailers. Sample includes
major brands of over-the-counter allergy drugs (Allegra, Benadryl, Claritin, Flonase, Nasacort, Xyzal, and
Zyrtec) for the period April 10, 2018 to October 1, 2019. The price for each product was collected hourly,
however the daily observations per product is less than 24 due to instances of incomplete data collection.

2.2 Data

For our empirical analysis, we collect a dataset of hourly prices for over-the-counter allergy

drugs from five online retailers in the United States.15 The retailers are the five largest in the

allergy category based on Google search data and are among the largest retailers overall by

e-commerce revenues.16 We have kept the identities of the retailers anonymous, calling them

A, B, C, D, and E. For each of these retailers, allergy drugs represent an important product

category. All five retailers sell products in many other categories, and four of the five have a

large in-store presence in addition to their online channel.

It is important to note that the retailers do not simply set uniform prices across both online

and brick-and-mortar channels. For example, Cavallo (2017) finds that online prices at drug-

stores differ 62 percent of the time from observed offline prices, and they are on average 1

percent lower. While prices may differ across a retailer’s brick-and-mortar stores, prices on the

websites were set uniformly for online shoppers across the country during our sample period.17

We focus on the seven brands of allergy drugs that are sold by all five retailers: Allegra,

Benadryl, Claritin, Flonase, Nasacort, Xyzal, and Zyrtec.18 We collect price information for all

versions of the allergy drugs and define a product to be a drug-brand-form-(variant-)size com-

bination, e.g., Loratadine-Claritin-Tablet-20. Using this definition, the average retailer sells 59

distinct allergy products on average. This set of products provides a relatively straightforward

set of competing products in which we can examine pricing technology in detail. However, we

believe our analysis of firms’ pricing technology applies more broadly to other products sold by
15The retailers are Amazon, Walmart, Target, CVS, and Walgreens.
16E-commerce revenue is obtained from eCommerceDB. Overall, these five retailers accounted for $6 billion in

e-commerce revenues for personal care, which includes medicine, cosmetics, and personal care products.
17Cavallo (2017) presents evidence of geographic variation across brick-and-mortar stores within the same retail

chain. Any geographic variation in prices across stores would guarantee that some customers will face different
prices online and offline.

18While some retailers offer the same product from multiple third-party sellers, our sample consists only of the
primary version of each product. This is typically sold directly by the retailer.
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Figure 1: Example Time Series of Prices for Identical Products Across Retailers
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Notes: Figure displays the time series of hourly prices in our dataset for two example products across five
retailers. Panel (a) displays the prices for an 80-count package of Xyzal tablets. Panel (b) displays the prices
for a 70-count package of Claritin tablets.

the retailers.

Our sample spans approximately one and a half years, from April 10, 2018 through October

1, 2019. Collecting high-frequency price data can be challenging. Websites change over time,

there can be errors loading pages, and there are often other technical issues. During our sample

period, we have relatively good coverage and observe the price for each product in 20 out of

24 hours on average. We take some steps to impute missing prices and identify outliers, which

we describe in Appendix A. Our final dataset has 3,606,956 price observations across the five

websites. Appendix Table 7 provides a tabulation of price observations for each retailer and

brand.

Daily summary statistics of our data are presented in Table 1. On average, we observe 59

products each day on each website, though retailer A carries more products than the other four

retailers. While retailer E only sells 35 products in the category on average, retailer A sells 125.

Prices vary across retailers, though it is important to note that the raw averages in the table

reflect differences in available products. All of the retailers make large price adjustments over

the sample period, with an average absolute price change of $1.91. However, some retailers

change prices more often than others. On an average day, retailer A changes the prices of 37

percent of its products, while retailer C only changes the prices of 0.8 percent of its products.

Retailers D and E change the prices of 2 percent of products each day.

2.3 Three Facts About Online Prices

We now use a descriptive analysis of our dataset to document three stylized facts about pricing

behavior in online markets.
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Stylized Fact 1: Online retailers update prices at regular intervals. These intervals differ

widely across firms.

To understand the pricing technology used by online retailers, we start by examining the time

series for individual products. Figure 1 shows prices for Xyzal-Tablet-80 and Claritin-Tablet-70.

These two examples illustrate fundamentally different pricing patterns across the five retailers.

Retailer A often has high frequency price changes of a large magnitude. Retailer B also has

high-frequency price changes, although less often. Retailer C appears to adjust prices at lower

frequency while D and E tend to have prices that remain constant for long periods.

The differences in frequency are systematic across all products offered by the retailers. To

capture variation in each firm’s underlying pricing technology, we plot the density of price

changes across all products by hour of the week in Figure 2. The results show important

differences in when firms are able to update prices. Retailers A and B have price changes that

are relatively uniformly distributed across all hours of the week. In fact, anecdotal evidence

suggests that these retailers are able to adjust prices multiple times within an hour, with Retailer

A able to adjust prices at the highest frequency. The other retailers show regular patterns of

price changes that are consistent with each firm running a pricing update script at pre-specified

intervals. Retailer C adjusts prices daily between 3:00 AM to 6:00 AM EDT, whereas retailers

D and E adjust prices weekly just after midnight EDT on Sunday.19 Thus, the figure documents

stark differences in pricing frequencies among competing retailers, including weekly, daily, and

near “real-time” pricing technology.

Though firms do not use every opportunity to change prices—recall that firm C changes

the prices of less than one percent of its products each day—we find the consistency in the

times that price changes occur as compelling evidence of technological constraints. Firms face

several costs to upgrade their pricing technology, including new systems to gather and process

higher-frequency input data, software to solve for the optimal higher-frequency prices, and new

hardware that enables the algorithms to run at a higher frequency. It is important to note that

pricing technology is not exclusively defined by software and hardware. Technology may also

include managerial or operational constraints that prevent a firm from updating a price on a

more frequent basis. For example, higher-frequency prices changes may be inconsistent with a

retailer’s marketing strategy or make inventory management more challenging. Even if slower

firms had access to the same hardware and software as retailers A or B, it would likely take

significant organizational changes to enable the firms to update their prices as frequently.20

The pricing patterns imply that, for the majority of hours in the week, only a subset of firms

have pricing technology that allows for a price change. Only for a brief period once a week,

on Sundays, do all firms simultaneously set prices. Thus, heterogeneous pricing technology is
19Many of the price changes that occur outside of these times are likely due to measurement error.
20In addition, some online retailers may be tied to legacy systems designed for brick-and-mortar stores that update

prices at a relatively low frequency.
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Figure 2: Heterogeneity in Pricing Technology by Hour of the Week
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(b) Retailer B
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(c) Retailer C
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(d) Retailer D
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(e) Retailer E
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Notes: Figure shows the distribution of price changes by retailer across each hour of the week for all products and
weeks in our sample. Panel (a) and (b) show that retailers A and B update prices in every hour of the week. Panel
(c) shows that retailer C updates prices exclusively during morning hours. Panel (d) and (e) show that retailers D
and E primarily update prices early in the morning on Sunday. Hours are reported in Eastern Time (UTC-5).
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inconsistent with the simultaneous move assumption in standard models of competition.

Stylized Fact 2: Retailers with the fastest pricing technology quickly react to price changes

of slower rivals, consistent with the use of automated pricing algorithms.

If algorithms depend on rivals’ prices, then we should expect high-frequency firms to quickly

react to price changes by low-frequency firms. High-frequency firms may change prices for

many reasons, including cost shocks, demand shocks, and experimentation. In order to isolate

the response to rivals’ prices, we analyze the timing of price changes by high-frequency firms in

weeks with and without a price change by a slower rival. A slow firm may be spurred to change

prices due to an idiosyncratic cost shock arising from, e.g., shipping delays or low inventory. If

the faster firm’s algorithm is a function of the slower firm’s prices, we may observe additional

price changes by the faster firm after the slower firm changes its price.21

To examine the reaction of prices to other firms, we start by taking price changes occurring

at retailer D, one of the firms with weekly pricing technology, as the impulse. We observe

348 price changes in our data occurring between midnight and 6 AM on Sunday. We partition

the weeks into Friday through Thursday blocks, giving us a two-day pre period and a five-day

post period around each price change. We then measure cumulative price changes of the same

product occurring at rival retailers during each week. While retailer D runs their price update

script once per week, not all prices are updated each week. We capture “treated” product-weeks

in which the product changed its price at retailer D and “control” weeks in which the product

did not change its price, despite the fact that retailer D had the opportunity to adjust prices.

Figure 3 plots the cumulative price changes before and after midnight on Sunday across

each product-week. The solid line corresponds to treated product-weeks, i.e., weeks in which

the price of a particular product changed at retailer D. The dashed line corresponds to control

product-weeks that had no price change. The solid line is adjusted by the pre-period difference

in rates so that the lines coincide at period -1 (11:00 PM on Saturday). The gap between the

solid line and the dashed line is the marginal increase in price changes when a price change

occurs at retailer D.

Based on Figure 3, it is clear retailers A and B have an increased probability of a price

change after a price change at retailer D. The fast retailers respond to a price change by retailer

D within about 48 to 72 hours.22 We do not observe a differential increase before price changes

by retailer D, providing evidence that the faster firms are responding to price changes by slower

firms and not just common shocks. By the end of the week, the fast retailers realize roughly 20

percent more price changes over the baseline. In Appendix Figure 13 we examine the results

for retailer E, the other retailer with weekly pricing technology, and find very similar results.
21If both firms are responding to common shocks (to demand or supply), we would typically expect the price

changes at the faster firm to happen before those of a slower rival.
22The delay may reflect the fact that it takes time for the firms to collect and parse rivals’ prices.
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Figure 3: Price Changes by Fastest Retailers in Response to Price Change by Retailer D

(a) Response by Retailer A
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(b) Response by Retailer B
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Notes: Figure displays the cumulative price changes for high-frequency retailers A and B in response to a price
change occurring at retailer D, which adjusts prices only once per week. The solid line displays the cumulative
price changes when retailer D changes a price of the same product in that week. The dashed line plots the
cumulative price changes when the product at retailer D does not have a price change. The solid line is
adjusted by the pre-period difference in rates so that the lines coincide at period -1 (11:00 PM on Saturday).

To quantify these effects, we use a difference-in-difference specification given by

yit = β(Posth(t) × PriceChangew(t)) + γi,w(t) + γh(t) + εit, (1)

where yit is an indicator for whether the faster retailer changed its price for product i in hour

t. We use a 48-hour period before and a 72-hour period after the slow firm adjusts prices, and

we scale the dependent variable by 72 so that the rate change can be interpreted as cumulative

changes over the three-day post period. Posth(t) is an indicator for whether the hour of the

week, h(t), is after an opportunity for the slow firm to adjust price. PriceChangew(t) is an

indicator for whether the slow firm adjusted prices in week w(t).23 We include product-week

fixed effects, γi,w(t), to control for product-specific time-varying factors that are common across

retailers, such as a demand shock that causes both retailers to adjust prices, with the faster

firm able to respond first. Finally, we include hour-of-week fixed effects, γh(t), to account for

time-varying factors within the week. In this way, β can be interpreted as the effect of the slow

retailer’s price change on cumulative price changes by the faster retailer. Identification exploits

two sources of variation: variation across weeks in which the slow firm does or does not adjust

the prices for a product and variation within each week before and after the opportunity for the

slow firm to adjust prices.

Table 2 reports regression results analyzing the response of the faster retailers, A and B,

to the slower retailers, D and E. Results indicate that when retailer D changes the price of
23Note that w(t) and h(t) map the hour t to week and hour of the week respectively.
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Table 2: Effect of Price Change by Slower Retailers on Price Changes by
Faster Rivals

Price Change by D Price Change by E

(1) (2) (3) (4)
Retailer A Retailer B Retailer A Retailer B

Posth(t)× PriceChangew(t) 0.770∗∗∗ 0.319∗∗∗ 0.667∗∗∗ 0.291∗∗

(0.207) (0.109) (0.189) (0.127)

Product ×Week FEs Yes Yes Yes Yes
Hour of Week FEs Yes Yes Yes Yes

Outcome Mean 5.709 0.927 5.709 0.927
Observations 1,115,035 353,873 1,115,035 353,873

Notes: Results from OLS regressions in which the outcome is an indicator for whether the
faster retailer changed its price. We include 48 hours before and 72 hours after each oppor-
tunity for a price change by the slow retailers, which occur Sunday at midnight. Therefore,
the sample includes Friday through Wednesday of each week. The outcome is scaled by 72
so the rate change can be interpreted as cumulative changes over the three-day post period.
Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

a product, retailer A has 0.8 additional price changes for the same product within 72 hours.

Retailer B has 0.3 additional price changes. Relative to the average number of price changes

over the same period—5.7 for retailer A and 0.9 for retailer B—the coefficients correspond

to a 13 percent and a 34 percent increase in the rate of price changes, respectively. Results

estimating the effect of a price change by retailer E are similar, and all the estimated responses

by A and B are statistically significant.24

These results imply that the retailers with the most frequent pricing technology, A and B, are

responding to price changes of lower frequency rivals within a relatively short period. Given

the large number of prices that these firms update and the speed at which prices are updated,

the results are consistent with the use of automated pricing algorithms that are a function of

rivals’ prices. To the extent that these algorithms are updated at lower frequency than prices

are adjusted, this implies a short-run commitment to an automated pricing strategy.

Stylized Fact 3: Firms with faster pricing technology have persistently lower prices for

identical products.

We now examine the relationship between pricing frequency and prices for identical products

across different retailers. By using a high-frequency pricing algorithm, firms may commit to

best-respond to their rivals. As we formalize later, this best response is often to undercut rivals’

prices, implying that high-frequency firms set lower prices than slower rivals.

In order to account for differences in product assortment across retailers and over time,

we regress log prices on indicators for each retailer while controlling for product and hour-day

fixed effects. The resulting coefficients reflect the average difference in (log) price for identical
24Retailer C has few price changes over the period, and we do not find evidence of additional changes by C in

response to price changes by D and E.
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Table 3: Price Differences for Identical Products Relative to
Retailer A

(1) (2) (3) (4)

Retailer B 0.064∗∗∗ 0.047∗∗∗ 0.146∗∗∗ 0.117∗∗∗

(0.000) (0.001) (0.000) (0.001)

Retailer C 0.092∗∗∗ 0.107∗∗∗ 0.171∗∗∗ 0.187∗∗∗

(0.000) (0.001) (0.000) (0.001)

Retailer D 0.249∗∗∗ 0.289∗∗∗ 0.307∗∗∗ 0.337∗∗∗

(0.000) (0.001) (0.000) (0.001)

Retailer E 0.284∗∗∗ 0.366∗∗∗ 0.340∗∗∗ 0.419∗∗∗

(0.000) (0.001) (0.000) (0.001)

Product FEs Yes Yes Yes Yes
Period FEs Yes Yes Yes Yes
Sold at All Retailers Yes Yes
On or After Jul 1 2019 Yes Yes
Observations 3,606,956 677,650 1,186,571 234,696

Notes: Results from OLS regressions in which outcome is log price. Baseline
sample in specification (1) includes all major brands of allergy drugs over the
period April 10, 2018 to October 1, 2019. Coefficients show price difference
relative to retailer A. Standard errors in parentheses. * p < 0.10, ** p < 0.05, ***
p < 0.01.

products (brand-drug-form-variant-size) sold across different retailers at the same point in time.

Table 3 presents the results. Retailer A serves as a baseline, so the coefficients reflect the

average difference in log price relative to A. Relative to retailer A, products are typically sold at

a 6.6 percent (0.064 log point) premium at B and a 9.6 percent (0.092 log point) premium at C.

These same products are sold at a substantial premium at retailers D and E, who have average

price differences of 28 percent and 33 percent, respectively. We observe the same qualitative

patterns if we vary our estimation sample. Specifications (2) and (4) use observations from

the most recent three months of the data (July 1, 2019 through October 1, 2019), the period

with the most stable panel. Specifications (3) and (4) includes only products sold by all five

retailers. The results remain qualitatively similar, though the price differences between A and

the other retailers increase when we restrict the sample.

We plot the (scaled) coefficients from specification (1) against a measure of pricing tech-

nology in Figure 4. The x-axis captures the pricing frequency, which increases along the x-axis.

We report the frequency as the median number of hours between any pricing update on each

website; the axis values are reversed so that superior (more frequent) technology is to the right.

Firm E has a median approximately equal to the number of hours in a week (168), whereas

firm A has a median of 1.

The large degree of price dispersion in online markets has largely been attributed to search

frictions. Yet, the robust correlation between pricing technology and average prices suggests

that pricing technology may play a role. High-frequency pricing algorithms may allow firms to

commit to undercutting slower rivals, softening competition and implying retailers with high-

frequency pricing have lower prices in equilibrium. One concern with this interpretation is that
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Figure 4: Price Index for Identical Products by Retailer Pricing Frequency
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Notes: Figure displays the relative prices for identical products (Firm A = 100) plotted against the pricing
frequency of each retailer. We report the frequency as the median number of hours between pricing updates.
168 hours corresponds to updating prices once per week. The relative prices are obtained from the estimated
coefficients in specification (1) of Table 3.

differences in supply cost, and, in particular, shipping and distribution costs, may explain price

differences across retailers. In Appendix B, we empirically test for differences in shipping and

distribution costs. We exploit the fact that several of the products in our data have identical

packaging but different quantities (e.g., 30 tablets or 60 tablets in the same bottle). This allows

us to decompose price into a component that varies with quantity and a fixed component, which

is a proxy for shipping and distribution costs. Based on our estimates of the fixed components,

shipping and distribution costs are not a main driver of price differences across firms. It is

important to note that there are other reasons why prices could be higher for firms with low-

frequency pricing, such as asymmetric demand across retailers. We discuss these issues in our

empirical exercise in Section 5.2.

3 Pricing with Differences in Frequency and Commitment

We develop a model of competition where firms can update prices at different intervals and

choose algorithms that determine future prices. Motivated by our observation that retailers

update prices at different intervals, we focus in this section on cases in which firms have asym-

metric technology, in terms of frequency or the ability to commit to future pricing strategies. To

fix ideas, we provide a duopoly example in Section 3.4. We examine the implications for the

adoption of pricing technology in Section 3.5. In Section 4, we consider the model where both

firms can commit to future pricing strategies.
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3.1 General Setup

We introduce a general setup in which two firms may choose algorithms at different frequencies,

and those algorithms can, in turn, automatically update prices at different frequencies. While

we do not provide results for the general case, it provides a framework that nests important

special cases that we examine in more detail.

Assume that each firm j can update prices at t = 0 and after each interval Tj thereafter. We

parameterize the pricing frequency of j as γj = 1/Tj = ajθj , where θj indicates the frequency

that the algorithm is updated by the firm, and aj indicates the additional frequency that the

algorithm sets automated prices. At the time a firm updates its algorithm, it may also change

its price. For expositional clarity, we assume aj , θj ∈ N.

Firms with higher values of γj can update prices more often. For example, consider the case

where a period is one week. The technology γj = θj = 1 corresponds to price-setting behavior

once at the beginning of each week, whereas γj = θj = 7 corresponds to daily price-setting

behavior. The technology θj = 1 and γj = aj = 7 corresponds to an algorithm that is updated

at the beginning of the week and sets automated prices the other six days of the week.

Each firm’s pricing algorithm may be a function of the current price of its rival (the “payoff-

relevant” price), though firms may respond with a lag due to differences in frequency. Formally,

an algorithm is a function pj = σj(p̂−jt, xt), where p̂−jt is the most recently observed price of

the rival firm. Non-price observables, such as cost shocks or the entire history of play, may be

captured by the state vector, xt. One can interpret our equilibrium analysis as conditional on any

realization of the state, therefore, we suppress xt in our notation and simply write algorithms

as σj(p̂−j). We will show that supracompetitive prices may be sustained in equilibrium even

when firms’ strategies do not condition on past play.

Each firms’ strategy at t = 0 consists of (pj0, σj0(·)), where pj0 is the price determined

while updating the algorithm and σj0(·) is the automated rule for future updates at frequency

aj = γj/θj . Updates to the algorithm are determined by θj such that firm j submits (pjt, σjt(·))
for each t ∈ {0, 1/θj , 2/θj , ...}. The price-setting component to the strategy space reflects the

fact that whenever a firm can make a revision to its algorithm, its rival does not take the

commitment to that algorithm to be credible in that instant.

Demand arrives in continuous time, with a measure m(t) ≥ 0 of consumers arriving at

t. The distribution of consumers is stable over time, so that demand looks identical at any

instant t except for the size of the market. Given demand and prices (p1, p2), firm j realizes

instantaneous profit flow πj(p1, p2)m(t). We assume the profit functions are quasiconcave and

have a unique maximum with respect to a firm’s own price. We also assume that firms have

complete information.25 Firms discount the future exponentially at rate ρ and have an infinite

horizon. Firms choose a sequence of prices to maximize profits, conditional on the flow of
25Uncertainty could be incorporated by, for example, letting πj denote the expected profit function for firm j.
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Figure 5: Timing with Pricing Technology (θ, γ)

(a) Asymmetric Frequency Example

s s + 1

Firm 1
θ1 = 1, γ1 = 1

Firm 2
θ2 = 2, γ2 = 2

(b) Asymmetric Commitment Example

s s + 1

Firm 1
θ1 = 1, γ1 = 1

Firm 2
θ2 = 1, γ2 = 4

(c) Symmetric Commitment Example

s s + 1

Firm 1
θ1 = 1, γ1 = 6

Firm 2
θ2 = 1, γ2 = 6

(d) Mixed Commitment Example

s s + 1

Firm 1
θ1 = 2, γ1 = 6

Firm 2
θ2 = 3, γ2 = 9

Notes: Figure shows examples of potential pricing technology. Solid black markers represent opportunities
to adjust algorithms and update prices. Open circles indicate opportunities to update prices based on the
previously-determined algorithm. Algorithm updates are governed by θ and pricing updates are governed by
γ.

consumers m(t), the profit flows πj , and the behavior of the rival firms.26

Figure 5 illustrates the timing of pricing decisions in period s with different technologies

(θj , γj). Solid black markers indicate flexible price-setting opportunities and open circles indi-

cate automated pricing updates determined by σj . Pricing technology for firm j is governed

by the frequency with which the firm can update its algorithm (θj) and the frequency that it

can update prices (γj). When γj > θj , the firm has a short-run commitment to update prices

according to the previously-determined algorithm, σj(·).
In this paper, we focus on three special cases of the model. These special cases capture the

key features of pricing technology that we observe in real-world environments and highlight

the similarities between asymmetries in pricing frequency and asymmetries in commitment.

• Asymmetric Frequency: First, we consider the case in which there is no commitment

but firms differ in their pricing frequency. In this case, pricing updates correspond to

algorithm updates (γ1 = θ1 and γ2 = θ2). In this game, there is no opportunity to rely on

the pricing rule σj(·) to set prices. Figure 5 panel (a) provides an example. We discuss

this game in Section 3.2.

• Asymmetric Commitment: We consider a game with asymmetric commitment, where
26For example, suppose that θ1 = 1, and let p̃2(t) denote the prices of firm 2 over time. Firm 1’s problem can be

written as:

max
{(p1t,σ1t(·))}

∞∑
s=0

(∫ s+ 1
γ1

s

e−ρtπ1(p1s, p̃2(t))m(t)dt+

∫ s+1

s+ 1
γ1

e−ρtπ1(σ1s(·), p̃2(t))m(t)dt

)
. (2)
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only one firm has an algorithm that commits to automatic updates as a function of its

rival’s price (γ1 = θ1 = 1 and γ2 > θ2). This game closely corresponds to the asymmetric

frequency model. Figure 5 panel (b) provides an example. We discuss this game and the

connections to the frequency game in Section 3.3.

• Symmetric Commitment: We consider a case with symmetric short-run commitment,

which allows us to highlight the role of commitment in algorithmic pricing. Figure 5

panel (c) provides an example. We turn our attention to this case in Section 4.1.

In each case, we restrict attention to Markov perfect equilibria. Because of the synchronous

nature of the updates at the beginning of each period, it suffices to analyze subgame perfect

equilibrium of a single-period stage game. Using these cases, we illustrate how the changes to

frequency and commitment brought about by algorithms can lead to higher prices in competi-

tive equilibrium.

The general setup above admits many cases that cannot be neatly summarized by a sin-

gle representation. Figure 5 panel (d) provides an example in which firms have periods of

staggered pricing and periods where one firm updates a price while the other updates its algo-

rithm. Such cases allow for potentially interesting within-period dynamics in Markov perfect

equilibrium.

3.2 Asymmetric Frequency

We now examine Markov perfect equilibria of the case with asymmetric frequency and no

commitment (γ1 = θ1 and γ2 = θ2). Without loss of generality, let γ1 = 1, so that firm 2

has (weakly) superior technology. As described above, the repeated game can be expressed as

a sequence of single-period stage games. We can then restrict our attention to subgame perfect

equilibrium in each stage game. The resulting equilibrium is the unique (pure-strategy) Markov

perfect equilibrium of the infinite horizon problem.

Let p̃2(t) denote firm 2’s prices over time and {p1t} denote the sequence of prices chosen by

firm 1 at each t = {0, 1, 2, ...}. For timing purposes, we assume that p1s is relevant for demand

over the period (s, s+ 1]. Firm 1’s problem can be written as:

max
{p1t}

∞∑
s=0

∫ s+1

s
e−ρtπ1(p1s, p̃2(t))m(t)dt. (3)

Because firm 2 can change its price at every point s ∈ {0, 1, ...,∞}, in addition to intermediate

times, the problem can be expressed as separate single-period stage games where firm 1 chooses

p1s at t = s.

Firm 2’s pricing behavior will have the following two properties in equilibrium: (1) firm

2’s price will be constant within each period (despite its ability to update prices after each
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interval 1/θ2 ≤ 1), and (2) firm 2’s price will lie along its Bertrand best-response function. The

first property is a result of π2(·) being time-invariant and p1 being fixed over the period. The

second property arises from the fact that it is optimal for firm 2 to price along the Bertrand

best-response function when it is pricing simultaneously with its rival (t = s) and also in any

later pricing update (e.g., t = s + 1/θ2). The Bertrand best-response function for firm 2 treats

p1 as fixed, which is a Nash equilibrium condition at t = s and is literally true at any other point

when firm 2 can update its price.

We return to firm 1’s problem. Without loss of generality, we focus on the first period

(s = 0). Let p2 now denote the price of firm 2, which is time-invariant within the period in

equilibrium, and let R2(p1) denote firm 2’s reaction function. Firm 1 chooses p1 recognizing

that firm 2 can react to its price after a period of 1/θ2. Firm 1’s problem can be expressed as:

max
p1

∫ 1
θ2

0
e−ρtπ1(p1, p2)m(t)dt+

∫ 1

1
θ2

e−ρtπ1(p1, R2(p1))m(t)dt. (4)

Because the profit flow function is time-invariant, we can write firm 1’s stage game problem

as:

max
p1

(1− α)π1(p1, p2)︸ ︷︷ ︸
Simultaneous Pricing

Incentive

+απ1(p1, R2(p1))︸ ︷︷ ︸
Sequential Pricing

Incentive

(5)

where α =
(∫ 1

0 e
−ρtm(t)dt

)−1 ∫ 1
1
θ2

e−ρtm(t)dt. The value 1−α describes the relative weight that

firm 1 places on the initial period (0, 1/θ2], which is a function of ρ, m(t), and θ2.27 In the initial

price-setting phase, the usual Nash-in-price logic holds: firm 1 treats firm 2’s price as given over

the period (0, 1/θ2]. After t = 1/θ2, firm 1 recognizes that firm 2 will price optimally against

its chosen price when it has the opportunity to update. Therefore, the sequential pricing logic

holds in this second phase.

There are two special cases of this pricing model that we now highlight. When α = 0, firm

1 considers only the current price of firm 2. Roughly speaking, firm 1 places zero weight on

the ability of firm 2 to react to a price change by firm 1. This can arise when θ2 = 1, i.e.,

when firms have symmetric technology and set prices simultaneously. Thus, our model nests

the usual Bertrand-Nash equilibrium assumption that firm set prices while holding fixed the

prices of rivals.

The second special case is when α = 1. In this case, firm 1 only considers its profits after

firm 2 has a chance to update its price. Roughly speaking, firm 1 fully internalizes the reaction

of its rival. This can arise when θ2 → ∞, i.e., when firm 2 has much faster pricing technology

than firm 1. The result is equivalent to a sequential pricing model, where first firm 1 chooses

a price and then is followed by firm 2. In this way, our model provides a foundation for the
27When the stage game interval is small, it is reasonable to assume that demand arrives uniformly and that ρ = 0,

in which case we have the simple expression α = θ2−1
θ2

.

20



Figure 6: Equilibrium in the Asymmetric Frequency Game
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Notes: Figure plots the best-response functions R1(·) and R2(·) for simultaneous price
competition with differentiated products. The intersection of these functions produces
the Bertrand-Nash equilibrium (pB1 , p
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2 ). The point (pS1 , p
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2 ) indicates the equilibrium of

the sequential pricing game. The point (pF1 , p
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sequential pricing game—i.e., the Stackelberg pricing model—analyzed in the theory literature

but rarely in applied work.

Depending on the underlying parameters, the model can capture both simultaneous and

sequential price-setting behavior. More generally, the asymmetric technology allowed for in

our model provides a foundation for a rich set of equilibrium outcomes that capture of a mix of

the incentives in these games. We now provide our first proposition, which describes the set of

equilibrium outcomes for any value of α:

Proposition 1. In the pricing frequency game, the equilibrium prices will lie on the faster firm’s
Bertrand best-response function between the Bertrand equilibrium and the sequential pricing equi-
librium.

Proof: We have established that firm 2’s price will lie along its Bertrand best-

response function, as it always treats firm 1’s price as given. When α = 0, the

problem is equivalent to a simultaneous Bertrand pricing game. Note that this is

obtained when θ2 = 1, in which case the game corresponds exactly to simultaneous

price setting. Denote the optimal price in this game pB1 . When α = 1, the game is

equivalent to a sequential price-setting game, where firm 1 is the leader and firm 2

is the follower, with optimal price pS1 . Because the profit function is quasiconcave,

the price that maximizes the weighted sum of π1(p1, p2) and π1(p1, R2(p1)) lies in

between pB1 and pS1 . QED.

Figure 6 illustrates the equilibrium of the game. When firms are very impatient or most

consumers arrive before firm 2 can update its price, the equilibrium will resemble Bertrand
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(pB). When firms are patient and all consumers arrive after firm 2 can update its price, the

equilibrium resembles sequential price setting (pS). The equilibrium prices pF can fall any-

where between these points, depending m(t), θ2, ρ, and the profit functions. Note that pF is

not necessarily a linear combination of pB and pS; it is in the figure because the best-response

function is linear.

We conclude this section by showing that higher prices resulting from asymmetric pricing

frequency are a general result for a large class of problems. Consider a typical case where the

products are substitutes (i.e., ∂q1
∂p2

> 0) and prices are strategic complements (with upward-

sloping best-response functions in the price-setting game, ∂R2
∂p1

> 0). Under these conditions,

the sequential price-setting equilibrium will have higher prices than the Bertrand equilibrium.

Thus, we obtain our second proposition:

Proposition 2. Suppose firms produce substitute goods and prices are strategic complements. In
the pricing frequency game, both firms realize higher prices compared to the simultaneous price-
setting (Bertrand-Nash) equilibrium.

Proof: Above, we have demonstrated that firm 1’s price lies between the Bertrand

price pB1 and the sequential equilibrium price pS1 . It suffices to show that pB1 < pS1 ,

in which case the optimal price lies on [pB1 , p
S
1 ].

Consider firm 1’s first-order condition to maximize profits (π):

dπ1
dp1

=
∂π1
∂p1

+
∂π1
∂p2

∂p2
∂p1

= 0 (6)

In the simultaneous price-setting equilibrium, firm 1 takes firm 2’s price as given

(∂p2∂p1
= 0), and ∂π1

∂p1
= 0. In the sequential game, firm 1 recognizes that ∂p2

∂p1
=

∂R2
∂p1

> 0 (by strategic complementarity) and ∂π1
∂p2

> 0 (because the products are

substitutes). Therefore, relative to the Bertrand-Nash prices, firm 1 has an incentive

to raise its price in the sequential game: dπ1
dp1

> 0. Firm 1’s optimal price will be

strictly greater than pB1 when α > 0 and the profit function is well-behaved. Higher

prices for both firms result from strategic complementarity. QED.

In typical models of differentiated products, prices are strategic complements (Tirole, 1988).

If prices are instead strategic substitutes, then the equilibrium will have one firm with higher

prices and one firm with lower prices, and the net effect on prices may be ambiguous.

3.3 Asymmetric Commitment

We now consider the asymmetric commitment game. Without loss of generality, we assume that

firm 2 can, through its algorithm, commit to future price changes that depend on firm 1’s price.

We assume that firm 1 does not have this capability, though, in general, our model allows firm
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1 to have an algorithm that responds to demand shocks and cost shocks, or other observables.

In the absence of such features, i.e., when demand is stable, its algorithm reduces to standard

price-setting behavior. The asymmetric game is of particular interest given the differences in

the ability of firms to monitor rivals and adjust prices documented in Section 2.

The asymmetric commitment game is a case of the general model with θ1 = 1, γ1 = 1,

θ2 = 1, and γ2 > 1. The model differs from the asymmetric frequency game by allowing the

firm with superior technology to commit to a pricing function. As described previously, we can

focus our attention on subgame perfect equilibrium for each single-period stage game.

Conditional on firm 2’s strategy (p2, σ2), firm 1’s problem in the first period can be expressed

as:

max
p1

∫ 1
γ2

0
e−ρtπ1(p1, p2)m(t)dt+

∫ 1

1
γ2

e−ρtπ1(p1, σ2(p1))m(t)dt. (7)

We can write firm 1’s stage game problem as a weighted average of the period before firm 2’s

algorithm adjust price, (0, 1/γ2], and the post-update period, (1/γ2, 1]:

max
p1

(1− α)π1(p1, p2) + απ1(p1, σ2(p1)) (8)

where α =
(∫ 1

0 e
−ρtm(t)dt

)−1 ∫ 1
1
γ2

e−ρtm(t)dt. In the asymmetric commitment game, σ2 de-

pends on p1. The duration 1
γ2

represents the time lag between firm 1’s pricing decision and the

response of the algorithm by firm 2.

As in the asymmetric frequency case, the model provides an incentive for firm 1 to devi-

ate from the competitive price. As long as ∂σ2(p1)/∂p1 6= 0, then firm 1 will not set a price

consistent with its Bertrand best-response function.

In this game, it is a (weakly) dominant strategy for σ2 to mirror firm 2’s best-response

function. We use this result to highlight a special equilibrium where firm 2 submits its best-

response function.

Proposition 3. There exists an equilibrium to the asymmetric commitment game in which the
second firm submits its best-response function as its algorithm. This strategy is weakly dominant.
The first firm submits a price that maximizes its own profit along the second firm’s best-response
function.

It is readily apparent that no profitable deviation exists. The firm that submits a price-

dependent algorithm cannot do better than submitting its Bertrand best-response function as

its algorithm, regardless of the price chosen by firm 1. Thus, this is the unique equilibrium

after eliminating weakly dominated strategies.28 At this equilibrium, equation (8) is equivalent

to (5). Thus, the asymmetric commitment game mirrors the asymmetry pricing frequency
28There are many Nash equilibria where firm 2 has an algorithm that, local to the equilibrium, the algorithm maps

to the best-response function. There are fewer limitations on how the algorithm looks away from the equilibrium.
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game from Section 3. In particular, the asymmetric commitment game obtains an identical

equilibrium to the asymmetric frequency game when firm 2 chooses this weakly dominant

strategy and has the same pricing frequency (γ2). Indeed, we present our second result for this

section as a corollary to Proposition 2:

Corollary. When firms produce substitute goods and prices are strategic complements, then, in the
asymmetric equilibrium where one firm submits its best-response function as its algorithm, both
firms realize higher prices compared to the price-setting (Bertrand-Nash) equilibrium.

We have shown that asymmetries in pricing technologies are sufficient to generate higher

prices than those in the simultaneous price-setting equilibrium. The results from this section

highlight a potentially surprising result: asymmetries arising from either frequency or commit-

ment generate the same outcomes in equilibrium. Thus, understanding the exact nature of the

pricing strategies may matter less than accounting for asymmetries. One can model a firm with

a superior algorithm that conditions its rival’s price as simply having the ability to update prices

more frequently.

As we show in Section 4, the parallels between frequency and commitment fall short when

both firms adopt algorithms that enable short-run commitment. In the frequency game, sym-

metric technology leads uniquely to Bertrand prices. By contrast, when both firms have algo-

rithms with short-run commitment, firms are able to realize higher prices and profits than the

Bertrand equilibrium even when firms have symmetric technology.

3.4 Duopoly Example

We have described above conditions under which a dynamic game of price competition with

asymmetric pricing frequency or commitment can be broken down into single-period stage

games. We now provide an example to help fix ideas. In this game, firms compete for demand

over a single period. Each firm produces a single product and set prices to maximize profits.

Firms initially set prices at the beginning of the period, and, depending on the technology, can

update prices throughout the period.

We assume that demand is such that products are (imperfect) substitutes and prices are

strategic complements. In particular, we use a variant of the Hotelling (1929) model, with

fixed locations and an outside option.29 Where the utility from both goods is positive, the

(local) demand for each good has the convenient linear form:

qj(t) = 1− pj + p−j . (9)

29Each consumer i receives utility v from consuming the good and has disutility of τdij for the distance dij they
travel to purchase from firm j. We set v = 2 and τ = 1. Utility is linear in income and is normalized so that the
marginal utility of income is 1. Consumer locations are uniformly distributed and the value of not purchasing is
normalized to have zero utility. This yields qj(t) = 1

2
m(t)(1− pj + p−j). We assume

∫ 1

0
m(t)dt = 2.
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Later, we extend this model, and we use the fact that consumers can choose to buy from neither

firm to pin down the collusive price.

As above, firm 1 sets its price once at the beginning of each period, whereas firm 2 can

update its price at a frequency of γ2 ∈ N, corresponding to elapsed intervals of T2 = 1/γ2.30

Firm 2’s price will lie along its best-response function. Firm 1 will internalize the reaction by

firm 2, choosing its price to maximize the profit function given by equation (5). In this example,

equilibrium prices are given by

p1 =
3

3− α
(10)

p2 =
6− α
6− 2α

,

where α =
(∫ 1

0 e
−ρtm(t)dt

)−1 ∫ 1
1
γ2

e−ρtm(t)dt. In general, prices depend on the relative level of

technology γ2, the discount rate ρ, and the arrival rate of consumers m(t).31 Note that, even

with linear demand, equilibrium prices may have a nonlinear relationship with α or γ2.

To illustrate the impact of pricing technology in this example, we consider three cases.

First, consider the standard case where firms have symmetric technology, i.e., γ1 = γ2 = 1. This

corresponds conceptually to a game in which firms use human agents to set prices. In this case,

α = 0, and thus equilibrium prices, p1 = p2 = 1, and profits, π1 = π2 = 1, are equivalent to the

simultaneous Bertrand-Nash equilibrium.

Now consider the case in which firm 2 adopts new pricing technology and is able to adjust

prices at a higher frequency than firm 1. This implies that γ2 > 1 and α > 0. From equation

(10), we can see that firm 1 and firm 2 increase their prices, but firm 2 chooses a lower price

than firm 1. This result has an intuitive logic: firm 2 commits to “undercut” the price of firm

1, maximizing its own profits conditional on its rival’s price. This softens firm 1’s incentive

to compete on price. For example, when α = 1
2 (which may correspond to γ2 = 2), firm 1

chooses a price of 1.2 and firm 2 chooses a price of 1.1. Firm 1 loses market share to firm 2, as

equilibrium quantities are (0.9, 1.1), but profits are (1.08, 1.21), which are higher for both firms

than in the Bertrand equilibrium.

Finally, consider the case in which firm 2’s technology is much more advanced, allowing

them to update prices “in real time.” In our model, this corresponds to γ2 → ∞ and α = 1.

Firm 1 now fully internalizes the reaction of firm 2 and chooses a price of 1.5. This leads firm

2 to price at 1.25. Quantities are (0.75, 1.25), and profits are (1.125, 1.5625), resulting in an

equivalent outcome to the sequential (Stackelberg) pricing game.

The Bertrand-Nash logic uses a dynamic metaphor to rule out the above outcomes: if firm

2’s price is fixed at either 1.1 or 1.25, firm 1 has a unilateral incentive to reduce prices, which
30The differences may arise from asymmetric frequency or asymmetric commitment.
31When demand arrives uniformly throughout the period and ρ = 0, we can represent equilibrium prices as

function of the faster firms technology, γ2: p1 = 3γ2
1+2γ2

and p2 = 1+5γ2
2+4γ2

.
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would then induce a reaction by firm 2, and so on until the Bertrand-Nash equilibrium is ob-

tained. Though both firms may recognize that they would be better off by not undercutting

the competitor, they cannot credibly commit not to (especially in a one-shot game). However,

since firm 2 is able to undercut firm 1’s price through more frequent pricing, firm 1 is able to

internalize firm 2’s reaction and maintain prices that are above the Bertrand equilibrium. In

this way, the model provides a foundation for commitment; such commitment is necessary to

generate higher prices than the Bertrand game.

3.5 Endogenous Pricing Technology

We have characterized pricing games in which firms may differ in their pricing technologies.

In the frequency game (γj = θj), asymmetry is essential to generating higher prices. If firm

1 adopts technology that enables it to update prices at the same frequency as firm 2, then

the equilibrium prices return to the Bertrand-Nash equilibrium. For this reason, firm 1 has a

disincentive to upgrade its technology to match that of firm 2. Thus, when firms can choose

pricing frequency, asymmetric frequencies are the equilibrium outcome.

To make things concrete, consider the duopoly example above where pricing frequency is

either slow (θj = 1) or fast (θj = 2) and α = 1
2 . If both firms choose slow technology, they

each receive profits (1, 1). If only one firm chooses the fast technology, profits are (1.08, 1.21),

with more profits for the fast-technology firm. If both firms choose fast technology, profits are

again (1, 1). When both firms have slow technology, one firm is willing to pay up to 21 percent

of its profits to upgrade to fast technology. Conversely, when both firms are endowed with fast

technology, one firm would be willing to pay up to 8 percent of its profits to switch to the slower

technology, even though this gives even greater profits to its rival.

We develop this more formally by modeling a first-stage adoption decision in Appendix C,

but the result is quite intuitive. Whenever firms choose the same pricing frequency, Bertrand

prices result. Each firm has a unilateral incentive to move away from symmetric technology, and

they would do so if the cost to change technology were not prohibitively high. A firm may adopt

costly technology even if its rival gains more from the outcome, as the firm prefers this outcome

to the world in which neither firm adopts. Conversely, a firm may even pay to downgrade its

technology to avoid the Bertrand outcome. In other words, firms may be willing to disadvantage

themselves relative to their rivals to gain the benefits of softened price competition. For these

reasons, we might not expect simultaneous price-setting behavior to hold in equilibrium.32

We have shown in Section 2 that, consistent with the incentives described above, asym-

metric pricing technology is a key feature of major online retailers. In other settings, factors

outside of the model may allow firms to maintain symmetric frequencies in equilibrium, such

as the benefits of adapting to time-varying demand conditions (so-called “dynamic pricing”) or
32Hamilton and Slutsky (1990) show similar incentives in a two-stage game where firms first choose whether to

move first or second. They do not address how a firm may commit to only moving once.
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market-specific technological constraints that limit the frequency of price changes.

4 Competition Among Automated High-Frequency Algorithms

In this section, we consider an environment in which all firms have automated pricing updates

that can depend on the prices of rivals. This case may be increasingly relevant as algorithms

become more widespread. We show how simple linear algorithms can support supracompetitive

prices in Markov perfect equilibrium. In general, algorithms that depend on rival’s prices do

not yield competitive (Bertrand) prices in equilibrium.

4.1 Symmetric Commitment Technology

Suppose that firm 1 and firm 2 can both update their algorithms with equal frequency, which

we normalize to one (θ1 = θ2 = 1). Firms are also able to commit to an algorithmic pricing

rule for future price updates, which occur simultaneously, with γ1 = γ2 = γ. Thus, initial

price-setting behavior determines prices until t = 1/γ, after which the algorithms determine

prices. For expositional clarity, we assume that there is no mass point in m(t) at t = 1/γ and

that algorithms instantaneously converge to the “steady-state” prices, so the transition has no

impact on profits. In other words, we allow the dynamic process of tâtonnement to play out in

every instant.33

Without loss of generality, we consider the first period, t ∈ (0, 1]. As before, we can write

firm 1’s stage game problem as a weighted average of the pre-update period (0, 1/γ] and the

post-update period (1/γ, 1]:

max
p1,σ1

(1− α)π1(p1, p2) + απ1(σ1, σ2) (11)

where α =
(∫ 1

0 e
−ρtm(t)dt

)−1 ∫ 1
1
γ
e−ρtm(t)dt.34 The value 1 − α describes the relative weight

that firm 1 places on the initial period (0, 1/γ], which is a function of ρ, m(t), and γ. In the

initial price-setting phase, the usual Nash-in-price logic holds: firm 1 treats firm 2’s price as

given over the period (0, 1/γ]. After t = 1/γ, firm 1 recognizes that firm 2’s algorithm will

control the pricing updates, and it will choose σ1 optimally with that in mind.

As in the asymmetric game, each firm chooses a strategy that maximizes a weighted average
33Alternatively, one could explicitly model this process over discrete pricing updates determined by γ. Our focus

for the symmetric commitment model is when γ is large; for this case, the process has no impact on firm profits or
strategies.

34The simplification is possible because the profit flow function is time-invariant. The full problem is

max
p1,σ1

∫ 1
γ

0

e−ρtπ1(p1, p2)m(t)dt+

∫ 1

1
γ

e−ρtπ1(σ1, σ2)m(t)dt.
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of two profit components. As before, the first component is equivalent to the profit function

for the Bertrand model. The second component is different, as firm 1 choses σ1 while taking

into account the choice of σ2. To make progress on understanding the equilibria of the general

setup, we analyze the equilibria of the subgame in which firms choose algorithms (σ1, σ2). We

can treat this component as a subgame because our setup is equivalent to a model in which

firms first choose prices at t = 0 and then choose (σ1, σ2) at t = 1/γ.

This subgame merits special attention because it captures the equilibrium of the full model

when both firms have high-frequency algorithms (as γ → ∞, α → 1). We consider the case of

α = 1 to be a fair approximation to price competition when both firms have very high-frequency

algorithms. Below, we examine the equilibria of this subgame.

4.2 Competing Algorithms

Symmetric commitment technology yields a competitive (sub)game in which endogenously-

chosen rival algorithms determine prices. We now define the one-shot game—competition in
pricing algorithms—and its equilibrium concept. Firms compete in pricing algorithms by sub-

mitting a pricing strategy σ(·), or “algorithm,” to a market coordinator. The algorithms may

condition directly on the prices of rivals. The algorithm may also be a function of variables that

are observable to the firm, but they cannot be functions of other player’s algorithms. This game

captures price competition when both firms have very high-frequency algorithms.

After receiving the pricing algorithms, the market coordinator solves the system of equations

set by the algorithms to determine prices. Based on the general model developed above, the

market coordinator may be thought of as the process of tâtonnement arising from an initial

price vector. Without further restrictions, the game thus far described may suffer from an

indeterminacy problem: there may be multiple solutions to the system of equations set by the

algorithms. For example, consider the case where both firms submit an algorithm of the form

σ(p−j) =

pC , for p−j = pC

pB, otherwise
(12)

where pC is the collusive price and pB is the punishment (Bertrand) price. Both (pB, pB) and

(pC , pC) are equilibria of the system, depending on the initial price vector.

To resolve the issue of multiple solutions, we provide a modification to the general game that

results in a unique solution conditional on algorithms. When multiple solutions are possible, the

market coordinator picks the solution that minimizes the profits of the firms. If multiple such

solutions exist, the coordinator randomizes among them. Effectively, we allow an adversarial

market coordinator to choose the initial price vector.

Restriction 1 (Profit-Minimizing Coordinator). In the pricing algorithm game, the market coor-
dinator selects the solution to the system of equations determined by the algorithms that minimizes
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joint profits. Formally, the market coordinator chooses p = (p1, p2) to solve

min
p

∑
j∈{1,2}

πj(σj(p−j), σ−j(pj)) (13)

s.t. pj = σj(p−j) ∀j.

If no solution exists, all firms earn zero profits.

A second and related issue is that cooperate-or-punish strategies like the one above would

raise immediate antitrust concerns if made public. We wish to analyze, fundamentally, the

impact of algorithmic competition on prices. Do they lead to higher prices in the absence of

behavior that looks collusive? It is possible for firms to employ strategies with discontinuous

punishments at the collusive price but that generate a unique solution for the coordinator. To

remove all “obviously collusive” strategies from consideration, we also require firms to submit

strategies that are continuous.

Restriction 2 (Continuity). Firms must submit algorithms that are continuous functions of rivals’
prices, otherwise all firms earn zero profits.

These restrictions provide conservative results regarding prices. We tie our own hands, elimi-

nating equilibria that mirror typical collusive strategies, in order to demonstrate the power of

commitment. In the real world, these restrictions reflect pro-consumer market mechanisms to

discipline firms. These mechanisms may be employed by antitrust authorities, savvy consumers,

or a platform seeking to maximize consumer welfare.

We now define the equilibrium concept for the algorithm-setting game. In equilibrium, each

firm’s algorithm maximizes its own profit, conditional on the algorithms submitted by the other

firms and subject to a market coordinator that minimizes joint profits when multiple solutions

to the algorithms exist. We formalize this below.

Equilibrium definition: When firms compete in pricing algorithms, equilibrium algo-
rithms {σ∗j } satisfy

σ∗j =arg max
σj |σ∗−j

πj(σj(p
∗
−j), σ

∗
−j(p

∗
j )) ∀j (14)

s.t. p∗ = argmin
p∈P̃

∑
j∈{1,2}

πj(σ
∗
j (p−j), σ

∗
−j(pj))

P̃ ≡ {p : pj = σ∗j (p−j) ∀j},

resulting in equilibrium prices p∗ = (p∗1, p
∗
2).

Even subject to the profit-minimizing coordinator, many equilibrium strategies can be sup-

ported. Note that any equilibrium of the pricing algorithm game has the following property: in
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equilibrium, no firm can do better by submitting a single price, conditional on the algorithms

of its rivals.35 Formally,

πj(σ
∗
j (p
∗
−j), σ

∗
−j(p

∗
j )) ≥ πj(pj , σ∗−j(p∗j )) ∀pj , j. (15)

Therefore, any equilibrium lies at the intersection of modified best-response functions for price,

where the best-response functions take into account the algorithms of the rivals.

Given the equilibrium concept, we now illustrate some of the similarities and differences

to the asymmetric commitment game from Section 3.3. Consider a scenario in the pricing

algorithm game in which firm 1 submits algorithm σ1(·) = pS1 and firm 2 submits algorithm

σ2(p1) = R2(p1), where pS1 = argmaxp1 π1(p1, R2(p1)) and R2(·) is firm 2’s best-response func-

tion. Recall that pS1 is equivalent to the equilibrium price of the first-mover in a sequential pric-

ing game. As in Section 3.3, neither firm can do better with a unilateral deviation. Thus, this

asymmetric case—where one firm submits the price, and the other a function of that price—is

an equilibrium of a game even when both firms have the technology to condition on the prices

of rivals.

If both firms instead submitted their best-response functions from the price-setting game,

σj(p−j) = Rj(p−j), the unique price vector that would satisfy both algorithms is the Bertrand

equilibrium. Thus, as in Section 3.3, firm 1 can do strictly better by submitting σ1(·) = pS1
instead of σ1(·) = R1(p2). Therefore, (σ1, σ2) = (R1, R2) is not an equilibrium of the algorithm-

setting game. This is a central negative result of our model.

Proposition 4. When firms compete in a one-shot game by submitting pricing algorithms, it is (in
general) not an equilibrium for each firm to submit their price-setting best-response function.

Proof: By the above reasoning, individual firms can realize a profitable deviation

by submitting a price that lies along their rival’s best-response function and results

in greater profits to the firm. QED.

When firms compete in algorithms, the algorithms will not reflect the price-setting best-response

functions in equilibrium. That is, if any firm’s algorithm depends on its rival’s price, the algo-

rithms cannot be “competitive” in equilibrium. Further, if any firm adopts an algorithm that

depends on a rival’s price, competitive prices are not obtained in equilibrium. Bertrand-Nash

prices are possible only when the algorithms do not depend on rivals’ prices.36 This is a straight-

forward implication of the incentives illustrated in the previous section.
35As algorithms need not depend on rivals’ prices, the model allows for costless deviations to price-setting behav-

ior.
36For example, pB = (pB1 , p

B
2 ) is obtained in equilibrium if both firms resort to simple price-setting technology,

with algorithms σj(p−j) = pBj . More generally, when σj(·) is differentiable at pB−j , a necessary condition to obtain
pB in equilibrium is that ∂σj(p−j)/∂p−j = 0 ∀j. Otherwise, the reaction by rivals creates an incentive to deviate
from the Bertrand price.
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Though we can show that all firms choosing Bertrand best-response functions is not an

equilibrium, the symmetric commitment game still admits a multitude of possible equilibria. To

demonstrate this, we further restrict the class of algorithms to a special case: algorithms that

are linear in other firms’ prices. Even with these straightforward algorithms, we can show that

many equilibria exist:

Proposition 5. When firms compete in a one-shot game by submitting pricing algorithms, any
price vector can be supported by algorithms that are linear functions of rivals’ prices, provided the
derivatives of profits with respect to prices exist at those prices.

Proof: For the two-firm case, consider the price vector p̂ = (p̂1, p̂2). Recall that, in

equilibrium, it must be the case that a firm cannot do better by reverting to price-

setting behavior. The price-setting first-order condition can be rewritten as:

dπj
dpj

∣∣∣∣
p̂

=
∂πj
∂pj

+
∂πj
∂p−j

∂σ−j
∂pj

∣∣∣∣
p̂

= 0, j = 1, 2 (16)

=⇒ ∂σ−j
∂pj

∣∣∣∣
p̂

= − ∂πj/∂pj
∂πj/∂p−j

∣∣∣∣
p̂

, j = 1, 2 (17)

To support the prices (p̂1, p̂2) with algorithms that are linear in rivals’ prices, one

can solve the system of equations given by

p̂j = σi(p̂−j) = aj + bj p̂−j , j = 1, 2 (18)

so that the first-order conditions hold at (p̂1, p̂2). It is apparent that the solution has

aj = p̂j − bj p̂−j , j = 1, 2 (19)

bj = −
∂π−j/∂p−j
∂π−j/∂pj

∣∣∣∣
p̂

, j = 1, 2. (20)

For the two-firm case, the system has a unique solution. It is straightforward to

extend the argument to many firms.37

Despite this result, we expect algorithms to result in higher prices than the Bertrand-Nash

equilibrium for three reasons. First, when algorithms have positive slope coefficients on ri-

vals’ prices, higher prices result. Imposing this restriction on firms’ choices seems reasonable

a priori when prices are strategic complements. In other words, prices that are lower than

Bertrand-Nash are supported only when an algorithm treats the rival prices as strategic substi-

tutes, despite the complementarity.
37For example, one solution to the J-firm problem would be to allow each firm’s algorithm to depend only on one

other firm’s price: Rj(p) = aj+bjkpk, where k = j+1∀j < J and k = 1 if j = J . The solution is bjk = − ∂πj/∂pj
∂πj/∂pk

∣∣∣
p̂

and aj = p̂j − bjkpk.
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Second, many of these equilibria are “knife-edge” cases. To examine which equilibria are,

in some sense, more robust, we simulate a simple learning process in Appendix D. Firms

experiment with algorithms that are linear functions of rivals’ prices, updating the parameters if

profits increase. From a starting point of randomly-chosen algorithms, firms disproportionately

arrive at equilibria that are bounded from below by their best-response functions and bounded

from above by the profit Pareto frontier. Our simulations show that higher prices result.

4.3 Algorithms, Supracompetitive Prices, and Collusive Prices

We have shown that algorithms—through frequency and commitment—can lead to higher

prices in competitive equilibrium. We now show that simple algorithms with commitment

can obtain fully collusive prices. In other words, joint profit maximization can be sustained in

Markov perfect equilibrium. We again focus on the symmetric commitment game when both

firms have very high-frequency algorithms (α → 1). In Markov perfect equilibrium, one-shot

mechanics prevail so that each firm commits to an algorithm that is optimal conditional on the

algorithm of its rival.

As discussed above, our restrictions rule out the typical strategies to sustain collusive behav-

ior. However, the collusive outcome can be supported by algorithms that satisfy the restrictions.

For example, in the model of demand in Section 3.4, the collusive outcome is (p1, p2) = (32 ,
3
2).

38

This is an equilibrium with the following strategies:

σj(p−j) = 1 +
1

3
p−j , j = 1, 2. (21)

It is straightforward to verify that, conditional on these algorithms, no firm wishes to deviate

in its algorithm and the collusive price results. In fact, the collusive outcome pC = (pC1 , p
C
2 ) can

be achieved in equilibrium in general with simple linear algorithms. These algorithms take the

form

σj(p−j) = pCj + bj(p−j − pC−j), j = 1, 2, (22)

where bj = − ∂π−j/∂p−j
∂π−j/∂pj

∣∣∣
pC

, eliminating any incentive for the rival firm (−j) to deviate in

prices. The intuition behind higher prices from these strategies is similar to how price-matching

guarantees might generate higher prices: if a firm (credibly) commits to adjust prices in the

same direction as its rival, then the rival has a reduced incentive to lower its price.39

The previous literature has argued that sophisticated pricing strategies employing artificial

intelligence can learn to collude. However, when firms simultaneously set pricing algorithms
38See footnote 29 for model details.
39Note that price matching does not arise in equilibrium in our model given the restrictions. If one firm chooses

the price-matching algorithm σ(p−j) = p−j , the other will pick the collusive price. But, conditional on the second
firm’s price, the first firm will want to deviate along its best-response function. If both firms choose price-matching
algorithms, then the adversarial market coordinator is free to pick any price that delivers the lowest profits.
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with short-run commitment, simple linear strategies can support fully collusive prices. Impor-

tantly, these strategies do not rely on the history of prices and do not feature “severe” punish-

ments that characterize traditional models of collusion (Harrington, 2018). Rather, collusive

outcomes can be supported by marginal changes that, without detailed knowledge of demand,

are indistinguishable from competitive reaction functions.

Our model of symmetric commitment has parallels with the analysis of conjectural varia-

tions. One important distinction is that the conjectural variations literature has attempted to

restrict the set of equilibria to those in which the conjectural variations are consistent with the

beliefs and actions of the other players (e.g., Bresnahan, 1981; Kamien and Schwartz, 1983;

Daughety, 1985; Lindh, 1992). In the equilibria of our model of pricing algorithms, firm’s beliefs

are consistent with the pricing strategies of other firms, yet any conjectural variation equilib-

rium may be supported, regardless of whether it is an equilibrium in consistent conjectures with

the price-setting game. Thus, our general model unifies several different pricing games (e.g.,

Bertrand, sequential pricing, conjectural variations) under the same set of primitives. We view

algorithms as providing a real-world foundation for many classic models of price competition.

By nesting these models under a common structure, we also provide a framework for firms to

choose among different models of competition by changing their pricing technology.

5 Oligopoly Impacts of Algorithmic Competition

In this section, we analyze the competitive impacts of algorithms in oligopoly settings. Using a

theoretical example, we examine the implications for price levels, price dispersion, and merger

effects. Motivated by the findings in Section 2, we focus on asymmetric technology where some

firms can react to price changes of rivals through greater pricing frequency or automation. As

a first step towards quantifying the potential real-world impact of algorithmic technology on

prices, we then perform similar analyses in our empirical setting. We calibrate a stylized model

to observed prices and shares in our data, and we perform counterfactual exercises to measure

how prices would change if firms competed via simultaneous Bertrand competition.

5.1 Asymmetric Pricing Technology in Oligopoly

We consider an oligopoly extension of the two-firm example from Section 3.4. We assume a

simple symmetric differentiated demand system given by

qj = 1− pj +
1

N − 1

∑
k 6=j

pk (23)

for N firms. With marginal costs of 0, the Bertrand-Nash equilibrium price is pj = 1 for all

firms.
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We focus on the case where N = 3. As in Section 3, each firm has technology characterized

by (θj , γj). We assume that θj = θ ∀j and γ3 > γ2 > γ1 = θ. In other words, all firms update

their algorithms at the same interval, but each firm has a different level of pricing technology:

firm 1 has the slowest algorithm, firm 2 has an algorithm with more frequent pricing, and firm

3 has superior technology that reacts to both firm 1 and firm 2.

In Appendix E, we consider an extension of the model that allows for different levels of

product differentiation, and we show that the implications are the same.

Effects on Price Levels

To evaluate the effects on price levels, we assume that the differences in pricing frequency

are large enough so that the faster algorithms can react before demand is realized by their

slower rivals. Effectively, firms with superior technology have a last-mover advantage for price.

When the algorithms can react faster than demand is realized, any set of technology satisfying

γ3 > γ2 > γ1 will have equivalent strategic effects. Under these assumptions, the firms’ best-

response functions are

R3(p1, p2) = argmax
p3

(p3 − c)[1− p3 +
1

2
(p1 + p2)] (24)

R2(p1) = argmax
p2

(p2 − c)[1− p2 +
1

2
(p1 +R3(p1, p2))]

R1 = argmax
p1

(p1 − c)[1− p1 +
1

2
(R2(p1) +R3(p1, R2(p1)))].

Figure 7 panel (a) shows the equilibrium prices that solve the above system of equations

(black markers). Firm 1, which has the slowest pricing technology, has the highest prices. Firm

3, which has the fastest pricing technology, has the lowest prices. Consistent with our empirical

findings in Section 2, prices are monotonically decreasing in pricing algorithm frequency. Firms

with inferior technology choose to compete less aggressively, while firms with superior tech-

nology credibly commit to offering lower prices. The Bertrand-Nash equilibrium prices, which

would be obtained with symmetric price-setting technology, are plotted with gray markers. Be-

cause firms in the model are symmetric in everything but pricing technology, all three firms

charge the same price in the Bertrand-Nash equilibrium.

All prices in the pricing algorithm equilibrium are higher than those in the Bertrand-Nash

equilibrium. Thus, differences in pricing technology can generate price dispersion and allow

firms to charge higher prices.

Merger Effects

We use the model to examine how pricing technology affects the impacts of mergers. In addition

to standard concerns that a merger increases market power, a merger may allow a firm with
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Figure 7: Equilibrium Prices in Oligopoly

(a) Three Firm Oligopoly
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(b) Post-Merger Prices
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Notes: Panel (a) shows equilibrium prices for the three-firm oligopoly example. The black markers indicate
prices for asymmetric pricing technology, where firm 3 has the fastest technology and firm 1 has the slowest.
The gray markers indicate Bertrand-Nash prices. Panel (b) shows the equilibrium prices for each firm after
mergers. The case in which the slower firms merge (firm 1 and firm 2) is plotted in black and the case in
which the faster firms merger (firm 2 and firm 3) is plotted in dark gray. The light gray markers indicate
equilibrium prices with Bertrand competition after a merger of firm 1 and firm 2.

inferior pricing technology to adopt the technology of its formal rival. Indeed, incorporating

pricing technology has been a motivation for online retail mergers in the past.40 Given that

a merger may also affect which firms effectively act as leaders and followers in pricing, the

effect of mergers under algorithmic competition may be quite different than under Bertrand

price-setting behavior.

We consider mergers between two of the three firms and assume that the merged firm

adopts the faster firm’s technology. This gives us two cases: one in which the middle firm

(firm 2) merges with a slower firm and one in which it merges with a faster firm. Because we

assume that the merged firm deploys the fastest technology across both entities, the latter case

is equivalent to the case in which the the slowest firm merges with the fastest firm.

Figure 7 panel (b) shows the post-merger equilibrium prices. The black markers indicate

prices after a merger between the firms with slower technology (1 and 2), and the dark gray

markers indicate the prices after a merger between firms with faster technology (2 and 3).

The light gray markers indicate prices after a merger between firms 1 and 2 under Bertrand

competition. The equilibrium prices may be compared to the pre-merger prices in panel (a),

noting that the y-axis has a different scale.

As the figure shows, the post-merger prices under algorithmic competition are uniformly

higher than those in Bertrand competition. Mergers generate significant incentives to raise

prices for both the merged firm and the non-merging rivals. In this example, even the prices
40For instance, news reports stressed that the merger between Jet.com and Walmart in 2016 allowed Walmart to

adopt Jet.com’s pricing technology, a major benefit of the merger for Walmart.
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for the non-merging rivals (firm 3 in the 1-2 merger, and firm 1 in the 2-3 merger) are higher

than the prices of the merged firm under Bertrand competition.

The effects on market average prices are similar whether or not the firm with the fastest

technology is one of the merging firms. However, the post-merger patterns of price disper-

sion depend on the pricing technology of the merging firms. When slower firms merge, price

dispersion across firms is exacerbated. The merged firm has the standard incentive to raise

prices—i.e., internalizing consumer substitution across the two pre-merger entities—in addi-

tion to the incentive to cede lower prices to the faster rival. In effect, the middle firm no longer

has the incentive or ability to undercut a slower rival. This yields a greater range of prices

relative to the pre-merger prices and relative to the post-merger Bertrand equilibrium.

Conversely, when the middle firm merges with the faster firm, the standard incentive to

raise prices is partially offset by the incentive to undercut the slower (unmerged) rival. In

this example, these incentives exactly offset so that the merged firm and the rival set identical

prices. Thus, a merger between faster firms can reduce price dispersion, because the reduction

in competition will have a greater effect on the firms with lower pre-merger prices.

The above analysis shows that mergers under algorithmic competition can yield greater

price increases relative to the effects in Bertrand-Nash equilibrium. However, the post-merger

patterns of price dispersion depend on the pricing technology of the merging firms. When

slower firms merge, price dispersion across firms is exacerbated, but a merger between faster

firms can yield lower price dispersion.

5.2 Counterfactual Effects in Calibrated Model

We now calibrate a stylized demand system to take a first step to quantify the potential impact

of algorithmic pricing. We generalize the model in Section 5.1 to allow for differentiation across

firms with flexible substitution patterns and apply the model to the five firms in our sample,

taking into account the pricing technology of each firm. We then simulate the alternative of

Bertrand competition using our calibrated model.

Demand and Supply

We introduce a linear demand system that allows us to capture two relevant features of the

market we study. First, we allow for flexible substitution patterns that reflect heterogeneous

demand conditions across retailers. Heterogeneity in demand may drive price differences across

retailers, and we want to allow for this possibility. Second, we wish to capture the supply-side

incentives in a tractable way. In algorithmic competition, the supply-side optimization problem

for one firm may be an input into another firm’s problem. This can render estimation and

simulation computationally intractable. Our demand model generates analytical solutions for

both the algorithm game and the simultaneous Bertrand game. This allows us to feasibly match
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the model predictions to the data and simulate alternative forms of competition.

We assume that demand for retailer j is given by

qj =
v

τ
µj0 +

1

2

∑
k 6=j,0

µjk −
1

τ

µj0 + 1

2

∑
k 6=j,0

µjk

 pj +
1

2τ

∑
k 6=j,0

µjkpk. (25)

Like the demand system given by equation (23), demand for j has an intercept, a component

that depends on pj , and a component that depends on the prices of other firms.

This linear demand system captures flexible substitution patterns between any pair of firms

j and k, depending on the weights µjk. It can be derived from a spatial differentiation model in

which mass µjk of consumers are located on a line segment connecting j to k. Consumers pay

a “travel” cost τ per unit traveled, representing the psychological or hassle costs of visiting each

website, in order to purchase a product with valuation v. Relative preferences are captured by

a consumer’s location on each line segment. Consumers that are closer to j have lower travel

costs and thus prefer j to k at the same price.

In addition to relative locations of consumers within segment, heterogeneity in consumer

preferences is captured through the distribution of consumers across segments: for all con-

sumers that could choose product j, there are a fraction of consumers µjk∑
k′ µjk′

that have product

k as the next-best option. We also allow for segments that link each firm to an outside option

with mass µj0, which captures consumers that only consider firm j. These features allow for

flexible patterns of horizontal differentiation. We present the derivation of the demand system

in Appendix F.

We consider supply-side assumptions that approximate the observed pricing behavior for

the five retailers examined in Section 2.2. Retailers D and E set prices simultaneously at the

beginning of the week. Given the relative pricing frequency of the other firms and the fact that

faster retailers respond quickly to slower retailers, we assume this is followed by retailer C, then

B, and, finally, A. The sequence can be interpreted as arising from asymmetries in frequency (as

in Section 3.2) or from asymmetric commitment (as in Section 3.3). The key assumption is

that the faster firms can change their prices in response to slower rivals before rivals realize

meaningful demand. Retailers maximize profits given constant marginal costs, c. This yields a

set of best-response functions analogous to those in equation (24) that determine equilibrium

prices. A key advantage of the chosen demand system is that it admits an analytical solution

for prices.

Calibration

The goal of the calibration exercise is to find demand parameters in order to match each re-

tailer’s relative price index and aggregate shares. Each firm’s relative price index is calculated

by averaging over the price of all products and then constructing an index relative to retailer A,
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as in Figure 4. A key challenge in online markets is that market shares for individual products

are rarely observed by researchers. We construct a proxy for aggregate market shares using

the share of Google searches for the retailer name and the word “allergy.”41 In order to help

validate this measure of market share, we also obtain market shares of online personal care

products for the retailers from ecommerceDB. Appendix Table 10 shows that the implied mar-

ket shares are quite similar. We also assume firms have identical marginal costs, which we

normalize to 1.42 Price-cost margins are determined by the calibrated prices in the model.

The unknown parameters to be recovered are the value of the product v, the travel cost

parameter τ , and the relative weights on the segments {µjk}. We parameterize the J by (J +1)

µ matrix with six parameters: {m1,m2,m3,m4,m5,m6}. We choose restrictions that allow

asymmetries in demand patterns to explain the price differences in the data.43 We give each

firm a unique mass for the outside option, though we set the mass for the outside option for A
to zero because A does not have any in-store sales for this market. Thus, we impose that the

all of A’s marginal customers would substitute to one of the other four online retailers at the

equilibrium prices.

We use the method of moments to choose the parameters (v, τ, {µjk}) that best fit the rela-

tive prices and shares we observe in the data. We minimize the sum of squared deviations from

relative average prices, taken from specification (1) of Table 3, and relative average shares

using our proxy for quantities.44

The calibrated parameters for the value of the product and travel costs are v = 5.11 and

τ = 0.67. The calibrated segment weights are displayed in Appendix Table 11. The parameters

imply an equilibrium mean markup of 2.07. Mean realized travel costs are 0.61. Thus, we
41We use the average of Google searches for the retailer name alone as well as the retailer name in addition

to “allergy.” See Appendix Table 10. The data were obtained from Google Trends (trends.google.com). Recent
evidence suggests that a primary motivation for brand-specific searches is to navigate to a particular website in
lieu of typing in a URL (Golden and Horton, 2021). The greater the extent that retailer-specific searches serve this
navigational purpose and that conversion rates are similar across websites, the better our proxy captures aggregate
shares.

42In the context of allergy drugs, we argue that differences in marginal costs across retailers for identical products
are relatively small. As in Ellison et al. (2018), we take wholesale costs to be common across retailers. All five
retailers sell large quantities of these brands across online and brick-and-mortar channels. Shipping costs may differ
among retailers, but shipping costs are a relatively small portion of the total price. The average price ranges from
$16 to $27 across retailers, and the products are small and light. We empirically test for differences in shipping costs
in Appendix B. Overall, differences in marginal costs are unlikely to generate the price differences seen in Figure 4.

43Specifically, for the slower firms, D and E, we constrain the segment weights so that substitution is symmetric
to all other retailers: m1 = {µAD, µBD, µCD, µAE , µBE , µCE}. The firm with daily pricing, C, has symmetric
weights with the faster firms, m2 = {µAC , µBC}. The two fastest firms have a unique weight m3 = µAB . We
normalize the density along the outside option segment for E to equal 1, which pins down the value of the distance
D0. Thus, (µA0, µB0, µC0, µD0, µE0) = (0,m6,m5,m4, 1), generating the outside option consumer mass vector
(0,m6D0,m5D0,m4D0, D0).

44In calibration, we impose a penalty if the parameters result in a firm capturing more than 95 percent of the
consumers on a given segment. This ensures that the counterfactual simultaneous Bertrand prices have an interior
solution. The resulting penalty is small and the constraint does not meaningfully affect our estimates. Our counter-
factual effects are robust to alternative share definitions that are based on category revenues or a combination of
revenues and search data.
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Table 4: Own-Price and Cross-Price Demand Elasticities

Retailer Price

A B C D E

Sh
ar

e

A -2.18 1.84 0.34 0.10 0.11
B 1.95 -2.83 0.39 0.12 0.12
C 0.71 0.77 -2.18 0.23 0.24
D 0.20 0.22 0.22 -1.77 0.27
E 0.17 0.18 0.18 0.22 -1.72

Notes: Table shows the estimated demand elasticity matrix from the cal-
ibrated model. Row j column k corresponds to the elasticity of demand
for j with respect to the price of k, i.e., (∂qj/∂pk)(pk/qj).

estimate that, net of travel costs, willingness to pay is roughly twice the equilibrium price. As

marginal costs are normalized to 1, prices may be interpreted as markups (price over cost). The

calibrated parameters imply reasonable price-cost margins between 0.46 (retailer A) and 0.59

(retailer E). Overall, the model fits the prices and shares quite well. Appendix Figure 14 shows

predicted and actual values for the markups and our measure of shares.

Table 4 shows a matrix of elasticity of demand estimates from the model. Own-price elas-

ticities range from −1.7 to −2.8, consistent with other estimates from online goods (e.g., De los

Santos et al., 2012). Our estimated cross-price elasticities indicate that, when the price of a

product increases, consumers are more likely to substitute toward more similar firms. For ex-

ample, retailer A’s consumers are more likely to substitute to B and retailer E’s consumers are

more likely to substitute to D. Allowing for flexible substitution patterns is important; if we had

instead assumed symmetric demand, we would not be able to rationalize the data.

Counterfactual Effects on Price Levels

To illustrate the potential impact of pricing algorithms on prices, we use our calibrated model

to predict equilibrium prices if all firms instead had simultaneous price-setting technology. The

results from the counterfactual exercise are presented in Table 5. The first set of columns

presents counterfactual Bertrand markups, shares, and profits. The second set of columns

presents the estimated values from the calibration exercise based on observed prices and shares.

The third set of columns presents the percent changes of moving from the Bertrand equilibrium

to the (observed) algorithmic competition equilibrium.

Our model indicates that algorithmic competition increases average prices by 5.2 percent

above the counterfactual Bertrand equilibrium. These price increases differ across firms. Firms

D and E realize more modest price changes of 1.9 and 1.7 percent. Based on our calibrated

demand parameters, these firms receive a greater relative share of consumers from outside

segments, rendering their behavior closer to that of a (local) monopolist. Competition for
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Table 5: Counterfactual Effects on Markups and Profits

Simultaneous Bertrand Algorithmic Competition Percent Change

Firm Markup Share Profit Markup Share Profit Markup Share Profit

A 1.77 0.282 6.5 1.85 0.314 7.9 4.5 11.4 22.0
B 1.81 0.314 7.6 2.00 0.275 8.1 10.1 -12.4 6.4
C 1.92 0.136 3.8 2.02 0.138 4.2 5.1 1.3 11.1
D 2.33 0.121 4.8 2.37 0.124 5.0 1.9 2.0 4.5
E 2.41 0.147 6.2 2.45 0.150 6.4 1.7 1.8 3.8

Aggregate 1.97 1 28.9 2.07 1 31.7 5.2 0 9.6

Notes: Table displays the implied markups, shares, and profits from the calibrated model. The first three
columns report the counterfactual estimates with simultaneous Bertrand price-setting behavior. The middle
three columns report the predicted values from the model of algorithmic competition that is fitted to the data
assuming retailer A has the fastest technology and retailer D and E have the slowest. The final three columns
report the percent changes of moving from simultaneous Bertrand to algorithmic competition. Profits are
arbitrarily scaled so that 1 unit corresponds to $100 million of e-commerce in the Personal Care category.

customers is more intense between the other three firms, who realize price increases between

4.5 and 10.1 percent as a result of algorithmic competition.

Because retailer A realizes meaningful increases in both price and quantity as a result of

algorithmic competition, it sees the largest gain in profits (22 percent). Despite a reduction in

quantity, retailer B’s price increase is great enough to generate a 6 percent increase in profits

from asymmetric technology. By contrast, retailers D and E realize profit gains of about 4

percent from more modest increases in both price and quantity. Consistent with the theoretical

results of Sections 3, all firms profit as a result of algorithmic competition.

Our model predicts that algorithmic competition results in a modest decline in market-level

quantities of 0.9 percent. This limited substitution to the outside option means that effects on

total welfare are small (a decline of 0.3 percent). Algorithmic competition in our calibrated

model serves primarily as a transfer between firms and consumers: consumer surplus falls

by 4.1 percent, and firm profits increase by 9.6 percent. To assign a dollar value to these

effects, we can do a rough back-of-the-envelope calculation. These five firms have annual e-

commerce revenues of approximately $6 billion in the category of Personal Care. If we assume

that our estimated price effects apply to the entire category, then consumer surplus for the

category would improve by $300 million annually by moving from algorithmic competition to

simultaneous Bertrand price setting.

Counterfactual Merger Effects

We use the calibrated model to examine the implications for merger analysis. We consider

mergers with Firm C, which allows us to consider mergers with faster firms (A and B) and

slower firms (D and E). Table 6 presents the percent change in price, profits, and consumer
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Table 6: Counterfactual Effects of Mergers

Simultaneous Bertrand Algorithmic Competition

Merged Firm Market Consumer Merged Firm Market Consumer
Price Profit Price Profit Surplus Price Profit Price Profit Surplus

Merger with A 7.6 7.2 4.7 8.0 -3.3 10.8 22.0 8.3 14.6 -6.9
Merger with B 7.0 6.9 4.7 7.7 -3.7 14.5 4.7 7.2 12.6 -6.4
Merger with D 3.8 2.4 1.9 3.9 -1.8 8.7 0.5 3.3 4.9 -3.1
Merger with E 4.1 2.5 2.0 4.6 -2.1 9.6 3.6 4.6 6.2 -4.6

Notes: Table displays the simulated percent change in price, profit, and consumer surplus due to a merger
between each of the four retailers and retailer C. The first five columns report the counterfactual estimates
comparing pre-merger outcomes compare to post-merger outcomes assuming simultaneous Bertrand price-
setting behavior. The final five columns report the counterfactual estimates comparing pre-merger outcomes
compare to post-merger outcomes assuming algorithmic competition.

surplus under the assumption of simultaneous Bertrand price-setting behavior and under the

assumption of competition in pricing algorithms. Thte table shows that the price effects for

the merging firm are exacerbated under algorithmic competition. Prices for the merged firm

increase by an average of 10.9 percent under algorithmic competition, compared to 5.6 percent

under simultaneous Bertrand. Similarly, the merger with algorithmic competition yields greater

increases in average market prices and a larger reduction in consumer surplus.

Though algorithmic competition yields a greater increase in market profits (producer sur-

plus) post-merger, it does not necessarily yield greater profits for the merging firms. The profits

gained by the merged firm from under algorithmic competition relative to Bertrand competition

are smaller for mergers with B and D and larger for mergers with A and E.

The above simulations indicate that algorithmic competition can exacerbate the incentive

to raise prices post-merger. On the other hand, it is possible that algorithmic competition

may make certain mergers less desirable for the merging firms. Overall, our results suggests

that algorithmic competition raises additional considerations for understanding the impacts of

mergers in oligopoly settings.

6 Conclusion

Online markets were initially expected to usher in “frictionless commerce” and intensify com-

petition among firms (Ellison and Ellison, 2005). Our results demonstrate how advances in

pricing technology can have the opposite effect, generating higher prices and exacerbating

price dispersion. High-frequency pricing algorithms can soften competition and increase prof-

its in equilibrium, even if the firms are otherwise identical. In our theoretical examples and

our counterfactual simulation, the largest gains accrue to a dominant firm with the most ad-

vanced technology and the largest market share. While standard models often assume symmet-
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ric pricing technology across firms, we show that accounting for this asymmetry can be quite

important.

Our findings suggest that the Bertrand equilibrium may be the exception in online markets,

rather than the rule. This raises new considerations for future policies about digital markets,

as the potential role of algorithms is much more broad than facilitating collusion. As we show,

simple pricing algorithms can increase prices in competitive equilibrium and may even obtain

the fully collusive outcome. To prevent such price increases, policymakers would have to limit

the ability of firms to react to rivals’ prices.45 One solution would be to prohibit algorithms

from directly conditioning on rivals’ prices, while still allowing firms to have frequent price

updates as a function of other factors, such as demand shocks. Besides prohibiting the behavior,

policymakers could limit the scraping of rival firms’ prices or restrict the storage of recent prices

by other firms; either of these policies may be more feasible to implement and yield similar

results.46 However, enforcement measures along these lines do not fit neatly into existing

regulatory and antitrust frameworks in most countries. Thus, the growing use of algorithms

raise conceptual and legal challenges that merit further consideration.

Though we focus on competitive equilibria, our study also has important implications for

collusion. First, the competitive equilibrium is typically used as “punishment” in a collusive

equilibrium. In our model, pricing algorithms can support a competitive equilibrium with

higher profits than the Bertrand equilibrium. Thus, pricing algorithms can make punishment

less severe, reducing the likelihood of collusion. On the other hand, our model explicitly con-

siders the ability of firms to increase their pricing frequency. In addition to making collusive

strategies more feasible, high-frequency pricing also gives firms the ability to obtain collusive

profits with linear, non-collusive strategies.

Online sales represent an increasing share of many diverse markets, including insurance,

accommodations, and automobiles, in addition to retail goods. In all of these sectors, the shift

online coincides with an increased availability of publicly posted prices and pricing technology

that uses these prices as inputs. Offline markets are increasingly adopting pricing algorithms as

well, and similar issues arise if brick-and-mortar stores adopt these methods. Though we view

the issues raised in this paper as quite general, there is a large scope for future research that in-

corporates other features of these markets and examines additional implications of competition

in pricing algorithms.

45In our analysis, rivals’ prices play a special role. Retail prices are public and immediately available, allowing
firms to respond to changes in real time. If firms were prohibited from using rivals’ prices, one could imagine firms
using algorithms based on rivals’ quantities, inventories, or other factors. However, these data are rarely made
public at a frequency that would be useful to the algorithm. Furthermore, the use of rival-specific measures (prices)
provides firms with several instruments to discipline price competition.

46Alternatively, policymakers could regulate the frequency with which firms update their algorithms and their
prices. This could restore simultaneous pricing and limit the ability of rival firms to react. Pricing frequency
regulation has been applied to retail gasoline markets in Austria and Australia.

42



References

ASKER, J., C. FERSHTMAN, AND A. PAKES (2021): “Artificial Intelligence and Pricing: The
Impact of Algorithm Design,” Working paper, National Bureau of Economic Research.

ASSAD, S., R. CLARK, D. ERSHOV, AND L. XU (2020): “Algorithmic Pricing and Competition:
Empirical Evidence from the German Retail Gasoline Market,” CESifo Working Paper 8521.

BAYE, M. R., J. MORGAN, AND P. SCHOLTEN (2004): “Price Dispersion in the Small and in the
Large: Evidence from an Internet Price Comparison Site,” The Journal of Industrial Economics,
52, 463–496.

BONANNO, G. AND J. VICKERS (1988): “Vertical Separation,” The Journal of Industrial Eco-
nomics, 36, 257.

BOWLEY, A. L. (1924): Mathematical Groundwork of Economics, California Press, Oxford.

BRESNAHAN, T. F. (1981): “Duopoly Models with Consistent Conjectures,” The American Eco-
nomic Review, 71.

BRYNJOLFSSON, E., A. A. DICK, AND M. D. SMITH (2010): “A Nearly Perfect Market?” Quanti-
tative Marketing and Economics, 8, 1–33.

BYRNE, D. P. AND N. DE ROOS (2019): “Learning to Coordinate: A Study in Retail Gasoline,”
The American Economic Review, 109, 591–619.

CALVANO, E., G. CALZOLARI, V. DENICOLO, AND S. PASTORELLO (2020): “Artificial Intelligence,
Algorithmic Pricing, and Collusion,” American Economic Review, 110, 3267–97.

CAVALLO, A. (2017): “Are Online and Offline Prices Similar? Evidence from Large Multi-
Channel Retailers,” American Economic Review, 107, 283–303.

——— (2018): “More Amazon Effects: Online Competition and Pricing Behaviors,” Working
paper, National Bureau of Economic Research.

CHEN, L., A. MISLOVE, AND C. WILSON (2016): “An Empirical Analysis of Algorithmic Pricing
on Amazon Marketplace,” in Proceedings of the 25th International Conference on World Wide
Web, 1339–1349.

CHEN, Y. AND M. H. RIORDAN (2007): “Price and Variety in the Spokes Model,” The Economic
Journal, 117, 897–921.

CONLON, C. T. AND N. RAO (2019): “The Price of Liquor is Too Damn High: Alcohol Taxation
and Market Structure,” NYU Wagner Research Paper 2610118.

DAUGHETY, A. F. (1985): “Reconsidering Cournot: The Cournot Equilibrium is Consistent,” The
Rand Journal of Economics, 368–379.

DE LOS SANTOS, B., A. HORTAÇSU, AND M. R. WILDENBEEST (2012): “Testing Models of Con-
sumer Search Using Data on Web Browsing and Purchasing Behavior,” American Economic
Review, 102, 2955–80.

DECK, C. A. AND B. J. WILSON (2000): “Interactions of Automated Pricing Algorithms: An Ex-
perimental Investigation,” in Proceedings of the 2nd ACM Conference on Electronic Commerce,
77–85.

——— (2003): “Automated Pricing Rules in Electronic Posted Offer Markets,” Economic Inquiry,
41, 208–223.

43



ELLISON, G. AND S. ELLISON (2005): “Lessons about Markets from the Internet,” Journal of
Economic Perspectives, 19, 139–158.

ELLISON, S. F., C. SNYDER, AND H. ZHANG (2018): “Costs of Managerial Attention and Activity
as a Source of Sticky Prices: Structural Estimates from an Online Market,” Working paper,
National Bureau of Economic Research.

FELLNER, W. (1949): Competition Among the Few, Kelley, New York, NY.

FERSHTMAN, C. AND K. L. JUDD (1987): “Equilibrium Incentives in Oligopoly,” The American
Economic Review, 927–940.

GOLDEN, J. AND J. J. HORTON (2021): “The Effects of Search Advertising on Competitors: An
Experiment Before a Merger,” Management Science, 67, 342–362.

GORODNICHENKO, Y. AND O. TALAVERA (2017): “Price Setting in Online Markets: Basic Facts,
International Comparisons, and Cross-Border Integration,” American Economic Review, 107,
249–82.

GORODNICHENKO, Y. AND M. WEBER (2016): “Are sticky prices costly? Evidence from the stock
market,” American Economic Review, 106, 165–99.

GROSSMAN, S. J. (1981): “Nash Equilibrium and the Industrial Organization of Markets with
Large Fixed Costs,” Econometrica, 49, 1149–1172.

HAMILTON, J. H. AND S. M. SLUTSKY (1990): “Endogenous Timing in Duopoly Games: Stack-
elberg or Cournot Equilibria,” Games and Economic Behavior, 2, 29–46.

HARRINGTON, J. E. (2018): “Developing Competition Law for Collusion by Autonomous Artifi-
cial Agents,” Journal of Competition Law & Economics, 14, 331–363.

HAY, G. A. (1981): “Oligopoly, Shared Monopoly, and Antitrust Law,” Cornell L. Rev., 67, 439.

HONG, H. AND M. SHUM (2006): “Using Price Distributions to Estimate Search Costs,” The
RAND Journal of Economics, 37, 257–275.

HOTELLING, H. (1929): “Stability in Competition,” The Economic Journal, 39, 41.

JOHNSON, J., A. RHODES, AND M. R. WILDENBEEST (2021): “Platform Design When Sellers
Use Pricing Algorithms,” CEPR Discussion Paper No. DP15504.

KALAI, A. T., E. KALAI, E. LEHRER, AND D. SAMET (2010): “A Commitment Folk Theorem,”
Games and Economic Behavior, 69, 127–137.

KAMIEN, M. AND N. L. SCHWARTZ (1983): “Conjectural Variations,” The Canadian Journal of
Economics, 16, 191–211.

KLEIN, T. (2019): “Autonomous Algorithmic Collusion: Q-Learning Under Sequential Pricing,”
Working paper, SSRN 3195812.

KLEMPERER, P. D. AND M. A. MEYER (1989): “Supply Function Equilibria in Oligopoly under
Uncertainty,” Econometrica, 57, 1243–1277.

KLENOW, P. J. AND B. A. MALIN (2010): “Microeconomic Evidence on Price-Setting,” in Hand-
book of Monetary Economics, Elsevier, vol. 3, 231–284.

LAZAREV, J. (2019): “Getting More from Less: Understanding Airline Pricing,” Working paper.

LINDH, T. (1992): “The Inconsistency of Consistent Conjectures: Coming Back to Cournot,”
Journal of Economic Behavior & Organization, 18, 69–90.

44



MASKIN, E. AND J. TIROLE (1988a): “A Theory of Dynamic Oligopoly, I: Overview and Quantity
Competition with Large Fixed Costs,” Econometrica, 56, 549–569.

——— (1988b): “A Theory of Dynamic Oligopoly, II: Price Competition, Kinked Demand
Curves, and Edgeworth Cycles,” Econometrica, 56, 571–599.

MIKLÓS-THAL, J. AND C. TUCKER (2019): “Collusion by Algorithm: Does Better Demand Pre-
diction Facilitate Coordination Between Sellers?” Management Science, 65, 1552–1561.

MILLER, N. H. AND M. C. WEINBERG (2017): “Understanding the Price Effects of the Miller-
Coors Joint Venture,” Econometrica, 85, 1763–1791.

MOORTHY, S. AND R. A. WINTER (2006): “Price-Matching Guarantees,” The RAND Journal of
Economics, 37, 449–465.

NAKAMURA, E. AND J. STEINSSON (2008): “Five facts about prices: A reevaluation of menu cost
models,” The Quarterly Journal of Economics, 123, 1415–1464.

——— (2010): “Monetary Non-neutrality in a Multisector Menu Cost Model,” The Quarterly
Journal of Economics, 125, 961–1013.

NEVO, A. (2001): “Measuring Market Power in the Ready-to-Eat Cereal Industry,” Econometrica,
69, 307–342.

O’CONNOR, J. AND N. E. WILSON (2019): “Reduced Demand Uncertainty and the Sustainability
of Collusion: How AI Could Affect Competition,” Working paper, SSRN 3406834.

OSBORNE, D. K. (1976): “Cartel Problems,” The American Economic Review, 66, 835–844.

PETERS, M. AND B. SZENTES (2012): “Definable and Contractible Contracts,” Econometrica, 80,
363–411.

PORTER, R. H. (1983): “A Study of Cartel Stability: The Joint Executive Committee, 1880-
1886,” The Bell Journal of Economics, 301–314.

SALCEDO, B. (2015): “Pricing Algorithms and Tacit Collusion,” Working paper.

SALOP, S. (1986): “Practices that (Credibly) Facilitate Oligopoly Coordination,” in New Devel-
opments in the Analysis of Market Structure, ed. by J. Stiglitz and F. Mathewson, MIT Press,
Cambridge, MA.

SALOP, S. C. (1979): “Monopolistic Competition with Outside Goods,” The Bell Journal of
Economics, 10, 141–156.

SKLIVAS, S. D. (1987): “The Strategic Choice of Managerial Incentives,” The RAND Journal of
Economics, 18, 452–458.

TENNENHOLTZ, M. (2004): “Program Equilibrium,” Games and Economic Behavior, 49, 363–
373.

TIROLE, J. (1988): The Theory of Industrial Organization, MIT Press, Cambridge, MA.

VON UNGERN-STERNBERG, T. (1991): “Monopolistic Competition on the Pyramid,” The Journal
of Industrial Economics, 355–368.

45



Appendix

A Details on High-Frequency Price Data

In this section, we provide further details on the collection of high-frequency price data and

product definitions.

We focus on the main seven brands of allergy drugs. Each of the retained brands specializes

in one drug, but they often offer the products in multiple forms (e.g., Liquid Gels, Liquid,

or Tablets). Each brand offers many different size options, so there are several products per

brands. In addition, most brands offer variants with different amounts of the active drug,

targeted for children, 12-hour or 24-hour use. There are also versions of the drug that are

combined with a decongestant. These varieties are captured by the variant of the drug. Finally,

we distinguish products that are sold in a twinpack, so that twinpack of 12 tablets is a different

product than a single pack of 24 tablets.47 When a retailer sells multiple versions of the same

product, we select the most popular version by retaining the version that has the greatest

number of reviews, on average, in our sample. Retailers A and B offer significantly more product

varieties than the other retailers. This is primarily due to the number of size options offered for

each brand.

Due to the technological challenges involved in collecting high-frequency data, there is

concern about measurement error. We address this in a few ways. First, we have focused on

high-volume brands, helping to ensure the availability of price information. Second, we use

supplemental information obtained at the time of our price sample to rule out price changes

brought about by a lag in the website. For example, we can see if the description of the product

is consistent over time. Third, we impute missing prices by filling in missing prices with the

most recently observed price if the gap of missing prices is fewer than six hours. Finally, for

the three retailers that do not change prices hourly, we smooth over single-period blips in price

that revert back to the earlier price.48 Table 7 displays the count of observations by brand and

retailer.

Figure 8 illustrates the challenge of capturing high-frequency price data over an extended

period. Dips in the data correspond to changes to the retailer website and issues with the

researchers’ servers. We note that we have several periods of many thousands of observations

for which we have a consistent sample, and the periods of missing data do not meaningfully

affect our results once we account for period fixed effects. We also include specifications using
47We drop multipacks that are of greater size than a twinpack, as they are not common across retailers.
48Overall, 7.8 percent of the prices are imputed in our analysis sample.
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Table 7: Price Observations by Website and Brand

Retailer Allegra Benadryl Claritin Flonase Nasacort Xyzal Zyrtec Total
A 309,554 219,098 508,768 104,634 66,178 108,854 236,044 1,553,130
B 126,738 58,270 144,098 46,584 12,517 34,177 75,096 497,480
C 89,477 99,608 171,782 80,772 34,633 32,508 90,858 599,638
D 112,273 68,466 128,385 50,130 2,411 47,321 128,123 537,109
E 71,061 47,799 125,171 51,732 38,051 23,185 62,600 419,599
Total 709,103 493,241 1,078,204 333,852 153,790 246,045 592,721 3,606,956

Notes: Count of price observations for the sample period from April 10, 2018 through October 1, 2019.

Figure 8: Observed Products Over Time
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Notes: Figure displays the average daily count of observed products in our
sample by week and by retailer. Dips in the data correspond to changes
to the retailer website and issues with the researchers’ servers. Retailers
A and B offer significantly more product varieties than the other retailers.
This is primarily due to the number of size options offered for each brand.

only data from July 1, 2019 through October 1, 2019, which are the most recent three months

and for which we have a fairly consistent panel.
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B Testing for Differences in Shipping and Distribution Costs

In Section 2.3, we document substantial differences in prices across retailers for the same prod-

ucts. We then examine how price differences can be generated by asymmetries in pricing tech-

nology. Another possible explanation for price differences is differences in supply costs. For

online retailers, shipping and distribution costs can be a significant component of costs, in ad-

dition to wholesale purchase costs. However, for allergy products, it is reasonable to think that

the differences in supply costs across retailers is small. The products are light and small, with

each package weighing less than a few ounces. This allows retailers to use standard shipping

processes and companies to deliver the products. In addition, wholesale prices are likely similar

across retailers, as each retailer sells a large national presence and the brands in our study are

large national brands.49

Though we do not measure costs directly, we test for variation in shipping and distribu-

tion costs by examining how prices vary with within-package quantity for the products in our

dataset. Many allergy medications use identical packaging for different quantities of medica-

tion. For example, the packaging for 30, 60, and 90 tablets of Zyrtec is identical; other than the

label, the only difference is the number of tablets in the (identically-sized) container. Since in-

dividual tablets weigh little, these three products should have negligible differences in shipping

costs.

We exploit variation in within-package quantity to decompose prices into a fixed component

per package and a variable component per unit (tablet, gelcap, etc.). For example, if the Zyrtec

packages described above sold for $22, $34, and $46, respectively, we infer that an additional

30 tablets increases the price by $12, and that the unit price of one additional tablet is $0.40.

We also infer that the fixed component of price is $10 (= $22− $12× 30).

From a consumer perspective, the fixed component of price tends to make unit prices lower

at larger packages, as the fixed component is spread out over more units. It may also be the

case that a retailer charges lower unit prices when selling larger packages. We account for this

by allowing the price per unit to decline with quantity. Thus, we model prices according to the

following schedule:

pjr = ajr + bjrx+ cjrx
2 (26)

where p is the price of product j at retailer r, a is the fixed component of price, b is the

unit price, and x is the within-package quantity. The coefficient c captures quantity discounts

on the variable component of price, which we expect to be negative, and e is an error term.

Here, product j refers to products with identical characteristics except for the within-package

quantity,50 and p provides the price for a specific product-size combination.
49Further, charging different prices to different retailers may be illegal under the Robinson-Patman Act, though

enforcement of this Act has not been consistent.
50We treat multi-packs as different products, since they might require greater shipping costs.
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To evaluate the differences in the fixed component of price across retailers, we divide by x

and estimate the following regression equation:

pxjr
x

= ar
1

x
+ b

(1)
j + b(2)r + cx+ εxjr (27)

where we allow the fixed component a to vary across retailers. We estimate product-specific

unit prices b(1)j using fixed effects, and we capture differences in unit prices across retailers with

b
(2)
r . The error term ε captures additional variation beyond the differences in means.

Table 8 presents results. Columns (1) and (2) report specifications including product-size

combinations that are sold on 3 or more websites, and columns (3) and (4) report specifications

including only product-size combinations sold by all five retailers. Column (1) and (3) restrict

the fixed component to be the same across retailers. We estimate that the fixed component is

approximately $5.00. The average price for the set of products included products is $18.67 and

$18.90 in the two specifications, indicating the fixed component of price is 27 percent of the

total price on average.

Columns (2) and (4) allow the fixed component and unit prices to vary across retailers,

while also allowing for a quantity discount. We find modest variation in the fixed component

of prices, but greater fixed components do not necessarily correspond to higher prices. For

example, we estimate that retailer B and C both have lower fixed components than retailer

A, though they have higher prices. Retailer A and D have similar fixed components, between

$4.58 and $4.95, yet retailer D has significantly higher overall prices (see Table 3). The unit

price premium, relative to A, is positive and decreasing with the frequency of price changes,

consistent with the findings in Section 2.3. We estimate a statistically significant per-unit dis-

count for packages with higher quantity.

It is plausible that the fixed component of price represents an upper bound on shipping and

distribution costs. With this interpretation, our estimates suggests that differences in these costs

across retailers are not able to explain the price differences we observe in the data. The differ-

ences are modest, and the least expensive retailers do not have the lowest fixed components of

prices. The above results indicate that differences in per-unit prices drive the price differences

we observe in the data. This is consistent with price differences arising from larger markups,

rather than differences in shipping and distribution costs.
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Table 8: Variation in Shipping Costs

(1) (2) (3) (4)

Fixed Component (All) 5.040∗∗∗ 5.068∗∗∗

(0.165) (0.192)

Fixed Component (A) 4.816∗∗∗ 4.595∗∗∗

(0.244) (0.391)

Fixed Component (B) 4.085∗∗∗ 4.244∗∗∗

(0.245) (0.391)

Fixed Component (C) 3.694∗∗∗ 3.310∗∗∗

(0.257) (0.391)

Fixed Component (D) 4.947∗∗∗ 4.585∗∗∗

(0.274) (0.391)

Fixed Component (E) 6.079∗∗∗ 5.907∗∗∗

(0.331) (0.391)

Unit Price Premium (B) 0.027 0.074∗∗∗ 0.062∗∗ 0.077∗∗

(0.020) (0.025) (0.025) (0.032)

Unit Price Premium (C) 0.021 0.090∗∗∗ 0.059∗∗ 0.116∗∗∗

(0.020) (0.024) (0.025) (0.032)

Unit Price Premium (D) 0.117∗∗∗ 0.119∗∗∗ 0.143∗∗∗ 0.143∗∗∗

(0.021) (0.026) (0.025) (0.032)

Unit Price Premium (E) 0.154∗∗∗ 0.106∗∗∗ 0.185∗∗∗ 0.126∗∗∗

(0.022) (0.027) (0.025) (0.032)

Quantity Discount −0.001∗∗∗ −0.002∗∗∗

(0.000) (0.000)

Product FEs X X X X
Sold at All Retailers X X
Observations 294 294 170 170
R2 0.967 0.974 0.915 0.933

Notes: Results from OLS regressions in which outcome is log price. Base-
line sample in specification (1) includes all major brands of allergy drugs
over the period April 10, 2018 to October 1, 2019. Coefficients show
price difference relative to unit price of retailer A. Standard errors in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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C Endogenous Pricing Frequency

C.1 Adoption Game

In this appendix, we provide a two-stage game in which firms can initially choose their pric-

ing technology, before choosing prices. Firms are characterized by pricing technology θj ∈
{1, 2, 3, ..., θ}, where a higher value represents superior technology and θ represents the best

available technology. Firms can adopt θj = 1 at zero cost or pay an adoption cost A to choose

any other feasible technology. Firms compete in the pricing game after determining their tech-

nology.

In the model, the profits do not depend directly on the technology each firm has, but rather

on their relative order. Denote the profits for the superior technology firm as πH , the profits for

the inferior technology firm as πD, and the profits for when they have the same technology as

πS . Following the results from the main text, πH > πD > πS . We assume that πH − πS > A, so

that it can be profitable for one firm to adopt costly technology.

We now characterize equilibria of the game. Without loss of generality, let firm 2 represent

the firm with (weakly) superior technology in equilibrium. To characterize the equilibria, there

are two relevant cases to consider.

Case 1: πH − πD ≥ A. Under these conditions, a pure-strategy equilibrium is for firm 2

to choose the best available technology (θ2 = θ) while firm 1 chooses θ1 = 1. It must be both

profitable for firm 2 to adopt a superior technology, relative to symmetric technologies (this is

true by assumption), and firm 2 must choose a technology so that firm 1 would not want to

“leapfrog” firm 2’s choice. As the adoption cost is the same for any technological improvement,

firm 2 must choose the best possible technology. The firm with superior technology has higher

profits.

Case 2: πH − πD < A. The pure-strategy equilibria are characterized by firm 2 adopting

any technology θ2 > 1 and by firm 1 choosing θ1 = 1. Firm 2 is indifferent to the exact level

of technology because firm 1 has no incentive to invest in superior technology in equilibrium.

In fact, the firm with inferior technology has higher profits (net of adoption costs) in this sce-

nario. Thus, the firm that adopts superior technology is only motivated to do so to break the

symmetric outcome, in which both realize lower profits. Though it competes more aggressively

and realizes higher profits in the pricing game, it would prefer to be in firm 1’s position.

The pure strategy equilibria result in higher prices and higher profits for both firms, com-

pared to the simultaneous price-setting equilibrium. As a corollary, any mixed strategy equi-

librium also has higher expected prices and profits than the simultaneous price-setting equi-

librium. Firm have a positive profit incentive to endogenously sort into asymmetric pricing

technologies.

To illustrate this point, consider the three-by-three first-stage game where firms can choose

pricing frequency and adoption is costless (A = 0). Firms know the profits for each subgame
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Figure 9: Example Pricing Frequency Adoption Game

Firm 2

Low Moderate High

Firm 1

Low (1.00, 1.00) (1.08, 1.21) (1.08, 1.21)

Moderate (1.21, 1.08) (1.00, 1.00) (1.08, 1.21)

High (1.21, 1.08) (1.21, 1.08) (1.00, 1.00)

when they choose a low frequency, a moderate frequency, or a high frequency (θ ∈ {1, 2, 3}).
Figure 9 presents the payoffs based on the illustrative model in Section 3.4 when α = 0.5.

Any scenario where both firms choose the same frequency—low, moderate, or high—is not

an equilibrium, because each firm has an incentive to deviate by choosing either a faster or

a slower pricing technology. The only equilibria of the game are asymmetric where only one

player chooses the highest frequency.

C.2 Adoption with an Initial Endowment of Technology

To further highlight the motivation for firms to make asymmetric choices in technology, we now

consider a variant of the game above where both firms are initially endowed with technology

θe > 1. To change to a different technology, firms pay an adoption cost A as before, but they

may costlessly retain their endowment or costlessly switch to θ = 1. The costs for the initial

endowment are sunk, so there is no salvage value for the endowed technology.

Without loss of generality, suppose that firms are initially endowed with θe = 2. If πH−πD ≥
A, then, similarly to case 1 above, the equilibrium has firm 2 choosing θ, while firm 1 keeps its

initial endowment θ1 = θe.51

Now suppose that πH − πD < A, so that surpassing your rival with costly investments is

not profitable. In this scenario, the unique pure-strategy equilibrium is for firm 1 to downgrade
its technology to θ1 = 1 and for firm 2 to maintain its endowment. Here, firms willingly

choose inferior technology to generate asymmetry. This is profitable for both firms, but it is less

profitable for the firm that gives up its initial endowment. Perhaps surprisingly, this result holds

even when there is some cost to downgrade (a), provided that the asymmetric outcome is still

more profitable for firm 1 than the symmetric outcome (πD−a > πS , and also πD−a > πH−A).

C.3 Discussion

The simple adoption game highlights a few properties of the price competition when firms vary

in pricing frequency. First, the incentive to have asymmetric technologies is quite robust. A

firm may adopt costly technology even if its rival gains more from the outcome, as the firm
51If firm 1 were to costlessly reduce its technology to θ1 = 1, firm 2 would prefer to keep its initial endowment.

But this is not an equilibrium because firm 1 would then optimally leapfrog firm 2.
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prefers this outcome to the world in which neither firm adopts. A firm may even pay a cost

to downgrade its technology, if the firm and its rival and endowed with similar technology to

begin with. Thus, though the most salient case for asymmetry is one in which the investing firm

gains vis-a-vis its rivals, firms may even be willing to disadvantage themselves relative to their

rivals to gain the benefits of softened price competition.

The above equilibrium results also apply if technology adoption is costless. Thus, if firms

can choose their pricing technology at costs that are not prohibitively high, then we should not

expect simultaneous price-setting behavior to hold in equilibrium. This raises some interesting

considerations for empirical researchers, where a simultaneous price-setting behavior is the

standard assumption.

When extending the analysis to dynamic settings, the model provides potentially interest-

ing interpretations of observed phenomena. In the first case discussed above, we have one firm

adopting the best available technology, and the other firm choosing to not invest at all in costly

technology. Thus, this model has flavor of a one-sided “arms race,” where the superior technol-

ogy firm over-invests in technology to prevent being bested by its rival. This over-investment

can be quantified in a more general model where the cost of adoption depends on the tech-

nology level, i.e., as a (weakly increasing) function, A(θ). We omit an exposition of the model

here, as it can complicate the analysis by eliminating all pure-strategy equilibria.

Over multiple periods, it would be possible to observe an arms race if the best-available

technology were increasing over time, and firms maintained their technology from the previous

period. With an increase in θ from one period to the next, firm 1 would find it profitable to

leapfrog firm 2, and, if the positions switch, an future increase in θ would allow firm 2 to again

overtake firm 1.
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Figure 10: Equilibrium Selection with Pricing Algorithms
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Notes: Figure displays the resulting prices from 500 simulated duopoly markets when firms use a simple
learning rule to update their prices or pricing algorithms. Each firm will update its algorithm if a random
deviation in the algorithm parameters improve profits. Any stable point in simulation is an equilibrium (no
profitable deviation exists). Each point displays the prices after 10,000 experiments. Panel (a) displays the
results from the asymmetric commitment game (where firm 1 chooses price). Panel (b) displays the results
from the symmetric commitment game where both have algorithms. The plotted lines indicate the two price-
setting best-response functions; their intersection is the unique Bertrand-Nash equilibrium.

D Equilibrium Selection

In the main text, we show that commitment in pricing algorithms can yield many equilib-

ria. Despite this multiplicity result, we expect algorithms to result in higher prices than the

Bertrand-Nash equilibrium. Here, we highlight one of the reasons: many of these equilibria

are “knife-edge” cases. To examine which equilibria are, in some sense, more robust, we simu-

late a simple learning process. We allow firms to experiment with linear algorithms, updating

the parameters if profits increase. From a starting point of randomly-chosen algorithms, firms

disproportionately arrive at equilibria that are bounded from below by their best-response func-

tions and bounded from above by the profit Pareto frontier. Our simulation shows that higher

prices result than those of the Bertrand equilibrium.

To test this intuition, we simulate a simple learning process to select equilibria. Demand

follows the the duopoly setup of Section 3.4, where γ → ∞. We allow firms to choose linear

algorithms: pjt = ajt + bjtpkt. We initialize each firm with random parameters aj0 and bj0.

Each period, one (randomly-chosen) firm runs an experiment, modifying their parameters:

ãjt+1 = ajt + ε1t and b̃jt+1 = bjt + ε2t . If this experiment improves profits, the firm updates

54



their benchmark to the new parameters ((ajt+1, bjt+1) = (ãjt+1, b̃jt+1)), otherwise, they revert

to the previous parameters ((ajt+1, bjt+1) = (ajt, bjt)). In the simulation, we do not allow the

parameters to become negative.

A “rest point” of this game is an equilibrium, i.e., where no unilateral deviation exists. To

find the rest points, we simulate 10,000 experiments in each of 500 duopoly markets. The

resulting prices are displayed in Figure 10. First, we consider the asymmetric commitment

game, where only firm 2 has algorithm technology and firm 1 has price-setting technology

(b1t = 0). Panel (a) shows that prices in the asymmetric commitment game, as would be ex-

pected, lie along firm 2’s best-response function and are (weakly) higher than the simultaneous

Bertrand-Nash equilibrium, (1, 1). There is a mass at the Bertrand-Nash equilibrium, at firm 1’s

optimal choice conditional on the best-response of firm 2, and at the joint profit-maximizing

point along firm 2’s best-response function. Some simulations arrive at the Bertrand-Nash equi-

librium because firm 2 never realizes a more profitable algorithm strategy. The second mass

point corresponds to the equilibrium of the sequential pricing game.

Panel (b) shows the resulting prices from the symmetric commitment game in which both

firms have pricing algorithms. The prices are centered around the collusive equilibrium, (1.5, 1.5),

and lie along the profit Pareto frontier. The equilibria are bounded by the two firms’ best-

response functions. Though, in theory, any point in the region between the best-response

functions and the profit Pareto frontier can be sustained as an equilibrium, only 3 out of 500

simulations do not yield an equilibrium along the profit Pareto frontier. Thus, we demonstrate

that many equilibria, included the Bertrand-Nash equilibria, are not particularly robust to naive

experimentation.

Our simulation of a simple learning process selects equilibria with higher prices. The re-

sulting prices are bounded from below by each firm’s best-response function and bounded from

above by the profit Pareto frontier. This is supported by the simple intuition that firms only

have the incentive to adopt these algorithms if it would improve profits above the price-setting

equilibrium.
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Figure 11: Differentiation and Equilibrium Prices in Oligopoly

(a) Three Firm Oligopoly
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(b) Post-Merger Prices

0.5

1.0

1.5

2.0

2.5

Pr
ic

e

.25 .3 .35 .4 .45 .5
Inverse Product Differentiation (b)

Merged Firm: Bertrand Unmerged Rival: Bertrand
Merged Firm: Fast Merger Unmerged Rival: Fast Merger
Merged Firm: Slow Merger Unmerged Rival: Slow Merger

Notes: Panel (a) shows simulated prices for the three-firm oligopoly with zero marginal costs. A vertical slice
of the plot captures the market equilibrium prices conditional on the product differentiation parameter, b. The
dashed lined shows equilibrium prices for Bertrand-Nash competition, which is the same for all firms for any
value of b. Solid lines show equilibrium prices for the firms under algorithmic competition when differences
in pricing technology are large and the faster firms are assumed to react instantaneously to price changes by
slower firms. Panel (b) shows equilibrium prices post-merger for the case in which the faster firms merge
(Firm 1 and Firm 2) and the case in which the slower firms merge (Firm 2 and Firm 3). The post-merger
prices under Bertrand competition are displayed in light blue.

E Differentiation and Oligopoly Effects

We extend the model considered in Section 5.1 to allow for various levels of differentiation in

three-firm oligopoly. We consider a simple differentiated demand system given by

qj = 1− pj + b
∑
k 6=j

pk (28)

where 0 < b ≤ 1
2 . Assuming marginal cost c, the Bertrand-Nash equilibrium price is pj = 1+c

2−2b .

The case in which b = 1
2 and c = 0 corresponds to the example in the main text. As in the

main text, each firm has technology characterized by (θj , γj). We assume that θj = θ ∀j and

γ3 > γ2 > γ1 = θ. We again assume zero marginal costs.

Figure 11 panel (a) shows the equilibrium prices as a function of b, the differentiation pa-

rameter. A market equilibrium is given by a vertical slice for a particular value of b. Consistent

with the example in the main text, prices are monotonically decreasing in pricing algorithm

frequency and all prices in the pricing algorithm equilibrium are higher than those from the

Bertrand-Nash equilibrium. Intuitively, price dispersion is exacerbated when product differen-

tiation is relatively low.

Figure 11 panel (b) shows the post-merger equilibrium prices for different values of b. The

merged firm sets the same price for both entities, which are shown by solid lines. The dashed
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Table 9: Simulated Equilibrium with Three Firms

(a) Simultaneous Bertrand

Merger

Price Profit Price Profit

b 1 2 3 1 2 3 1 2/3 1 2/3

0.3 0.71 0.71 0.71 0.51 0.51 0.51 0.76 0.88 0.58 1.08
0.4 0.83 0.83 0.83 0.69 0.69 0.69 0.96 1.15 0.92 1.60
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.33 1.67 1.78 2.78

(b) Algorithmic Competition

Fast Firm Merger Slow Firm Merger

Price Profit Price Profit Price Profit

b 1 2 3 1 2 3 1 2/3 1 2/3 1/2 3 1/2 3

0.3 0.76 0.74 0.72 0.52 0.52 0.53 0.82 0.89 0.59 1.11 0.94 0.78 1.07 0.61
0.4 0.95 0.90 0.87 0.72 0.75 0.76 1.14 1.21 0.95 1.76 1.36 1.05 1.54 1.09
0.5 1.30 1.18 1.12 1.10 1.22 1.25 2.00 2.00 2.00 4.00 2.50 1.75 2.08 3.06

Notes: Table displays the simulated price, quantity, and profit under a three firm oligopoly for different values
of differentiation, b, when demand is given by equation (28). The first three columns report the outcomes
assuming simultaneous Bertrand price-setting behavior, which imply the same price and quantity for all firms.
The final nine columns report the outcomes assuming algorithmic competition for each of the three firms,
where firm 1 is the firm with the slowest pricing technology and firm 3 is the firm with the fastest pricing
technology.

lines show the prices for the single unmerged rival. The equilibrium prices may be compared

to the pre-merger prices in panel (a), noting that the y-axis has a different scales.

The general patterns remain similar to the example in the main text. Algorithmic competi-

tion exacerbates the price effects of mergers. The prices for the merged firm under algorithmic

competition are higher than those under Bertrand competition. The unmerged rival also has

a strong incentive to increase price. For lower values of differentiation (high values of b), the

resulting price for the unmerged rival is greater than the Bertrand-Nash price for merging firms.

The effects on market average prices are similar whether or not the firm with the fastest

technology is one of the merging firms. However, the post-merger patterns of price dispersion

depend on the pricing technology of the merging firms. When slower firms merge, price dis-

persion across firms is exacerbated, but a merger between faster firms can yield lower price

dispersion.

Table 9 reports pre-merger and post-merger prices and profits for specific values of b.
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F Details of Spatial Differentiation Model

We model demand through the lens of spatial differentiation. Each consumer is located between

two firms; these two firms represent each consumer’s first and second choice at equilibrium

prices. Consumers vary in their proximity to each firm, therefore the “travel” costs associated

with each firm varies across consumers. In our setting, travel costs represent psychological

costs and hassle costs of visiting each website. This may roughly be interpreted as search costs,

though we provide no formal connection.

The model is a generalization of the Hotelling (1929) line. Unlike the circle model of Salop

(1979), firms compete with all other firms, not just their closest neighbors. In this way, the

model is related to the pyramid model of von Ungern-Sternberg (1991) and the spokes model

of Chen and Riordan (2007). Unlike previous models, our approach allows for the mass of

consumers on each segment to be different, including the mass of consumers on segments that

link to an outside option. This feature is important since it allows for flexible substitution

patterns that could explain differences in prices across retailers. This is also an advantage

over models of vertical differentiation, such as the logit model, which restrict the horizontal

substitution patterns to be symmetric across firms.

Each firm j lies in a (J − 1)-dimensional space. A mass of consumers µjk lie along the line

segment connecting j to k.52 The distance between each firm is 1 unit. Each firm sells a single

product, which consumers value at vj > 0, and each firm chooses a price pj . Each firm also has

a mass of consumers on a line segment of distance D0 connecting to an outside option (j = 0),

with p0 = 0 and v0 = 0. Consumers lie on these segment with density µj0 and mass µj0D0. D0

may be arbitrarily large, so that the firm never captures the full segment. Figure 12 provides a

visual representation of the demand system for the case of three firms.

Each consumer i is indexed by its location and bears a travel cost τdij for traveling a distance

dij to firm j to purchase its product. A consumer along segment jk will choose j if uij > uik, or

(vj − pj)− (vk − pk) > τ(dij − dik). (29)

That is, the consumer will prefer j to k if the added value of product j is greater than the

additional travel cost of visiting firm j. The consumer also has the option to stay home and get

ui0 = 0, which he will do if uij < 0 and uik < 0.

Consumers are distributed along each line segment connecting j to k according to a distri-

bution Fjk with support [0, 1]. We assume that the distribution is symmetric about the midpoint

of the segment. Symmetry implies Fjk = Fkj , so the direction of the connection is arbitrary. We

also assume that the same distribution is applied to all segments: Fjk = F , though this could

easily be relaxed. Demand along each segment can then be characterized by the distribution

function F .
52Demand can be represented by a graph. The graph is complete if µjk > 0 for all {j, k}.

58



Noting that dik = 1 − dij for a consumer on segment jk, a consumer on this segment will

choose j if uij > uik and if uij ≥ 0, i.e., 1
2+

1
2τ ((vj − pj)− (vk − pk)) > dij and 1

τ (vj − pj) ≥ dij .
Firm j receives customers for which dij satisfies both conditions. Therefore, firm j receives a

quantity of µjkF (yjk) from line segment jk, where

yjk = min

{
1

2
+

1

2τ
((vj − pj)− (vk − pk)) ,

1

τ
(vj − pj)

}
. (30)

For the outside segments, yj0 = 1
D0

1
τ (vj − pj), as these segments have length D0 instead of

1. The parameter D0 can also be interpreted as the relative travel cost of choosing the outside

option relative to an inside good, as the model has an isomorphic parameterization with outside

travel costs τ̃0 = D0τ .

Overall, quantities are given by

qj =
∑
k 6=j

µjkF (yjk). (31)

The flexibility in substitution patterns from this relatively parsimonious model comes primarily

through the mass of consumers on each segment {µjk} and the choice of distribution F . In

equilibrium, the consumers {µj0} that have no next-best alternative other than the outside

option are also important in determining substitution patterns.

We introduce some terminology to facility discussion of the model. When max(uij , uik) ≥ 0

for all i on segment jk and yjk < 1, the segment is contested.53 When some consumers prefer

to stay home, rather than purchase, the segment is uncontested. If segment jk is uncontested,

there is no consumer indifferent between j and k, so those firms have local monopoly power

over a portion of consumers on that segment. That is, a change in the price of firm k does

not affect demand for firm j at the margin. When all segments between firms (the “inside”

segments) are contested, we say the market is covered. For a covered market, all consumers on

inside segments purchase.

For our calibration exercise, we assume that consumer locations are distributed uniformly

within each segment. We also assume that the products are homogeneous (but for the travel

costs), so that vj = v for all j except for the outside option, for which v0 = 0. Finally, we

assume that consumer valuations are sufficiently high that all consumers on the inside segments

purchase a product.54 Demand for retailer j is equal to

qj =
∑
k 6=j,0

µjk

(
1

2
− 1

2τ
(pj − pk)

)
+ µj0

1

τ
(v − pj) . (32)

Rearranging terms yields equation (25) in the main text.

53When yjk ≥ 1, the segment is dominated by j.
54In a slight abuse of notation, we omit the arrival rate of consumers m(t).
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Figure 12: Spatial Differentiation Model with Three Firms
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Notes: Example of demand for three firms with an outside option. The
mass of consumers along each segment is given by µjk. The segments
with mass µ10, µ20, and µ30 represent consumers whose next-best alter-
native to the linked firm is the outside option.

60



G Additional Tables and Figures

Figure 13: Price Changes by Fastest Retailers in Response to a Price Change by Retailer E

(a) Response by Retailer A
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(b) Response by Retailer B
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Notes: Figure displays the cumulative price changes of high-frequency retailers A and B in response to a price
change occurring at retailer E. The solid line displays the cumulative price change when retailer E changes a
price of the same product in that week. The dashed line plots the cumulative price changes when the product
at retailer E does not have a price change. The pre-period differences are netted out so that the difference is
zero at period 0.

Figure 13 shows the reaction of high-frequency firms (retailers A and B) to price changes

by low-frequency retailer E. The charts imply that the high-frequency firms respond to a price

change by Retailer E within about 48 hours.
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Table 10: Measures of Retailer Market Share

Google Search

Share of Online “Retailer name”
Retailer Personal Care “Retailer name” + Allergy Mean

A 0.338 0.427 0.188 0.307
B 0.252 0.311 0.263 0.287
C 0.084 0.139 0.123 0.131
D 0.119 0.062 0.188 0.125
E 0.207 0.061 0.237 0.149

Notes: Share of personal care category reflect 2019 revenue figures from ecom-
merceDB.com. This includes online sales of medical, pharmaceutical, and cosmetic
products for each of the retailers, including sales through mobile channels. Google
search figures refer to the searches over the sample period as a share of total searches
for all of the five retailers. Google search data are obtained from Google Trends
(trends.google.com).

Table 10 provides measures of aggregate shares for the retailers in our data. We calibrate

our model to Google search shares, using the mean of search shares for the retailer name and

search shares for the retailer name along with the word “allergy.” We cross-check these shares

against revenue shares provided by ecommerceDB.com. The measures of online revenue shares

are obtained for the category of personal care, which includes all medical, pharmaceutical, and

cosmetic products. Four of our retailers are in the top five for the personal care category by

revenue, and all are in the top ten. The other retailers in the top ten have a focus on cosmetics.
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Table 11: Calibrated Segment Weights

Retailer k

A B C D E Outside

R
et

ai
le

r
j

A 0.00 11.44 2.10 0.54 0.54 0.00
B 11.44 0.00 2.10 0.54 0.54 1.74
C 2.10 2.10 0.00 0.54 0.54 1.45
D 0.54 0.54 0.54 0.00 0.54 3.07
E 0.54 0.54 0.54 0.54 0.00 3.99

Notes: Row j column k shows the mass of customers on the segment
between retailer j and k (µjk). The weights are symmetric; for conve-
nience, they are displayed twice (µjk = µkj), representing the perspec-
tive of each firm. The outside segment weights represent the share of
customers captured from the outside segments at the equilibrium prices.
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Figure 14: Calibration Fit for Markups and Shares

(a) Markups
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(b) Shares
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Notes: Figure displays the markups (panel (a)) and the relative shares (panel (b)) plotted against the pricing
frequency of each retailer. Frequency is normalized to the relative sequence. The black squares indicate the
data, and the red dots are the fitted prices from a calibration exercise. The relative prices are obtained from
the estimated coefficients in specification (1) of Table 3. The markup level is pinned down by the calibrated
model. The green triangles display the counterfactual simultaneous Bertrand markups at the calibrated pa-
rameters and the corresponding shares.

The fit of the calibration exercise is displayed in Figure 14. In panel (a), squares indicate

the relative prices in the data; these prices are translated to markups based on the calibrated

model. The x-axis displays the pricing frequency in terms of the relative sequence. The red

dots indicate the markups from the calibrated model. Likewise, the black squares in panel (b)

represent observed shares, and the red dots indicated the predicted shares from the model. Our

eight-parameter model fits prices and shares quite well.
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